PDF
Abstract
The rapid growth of blockchain and Decentralized Finance (DeFi) has introduced new challenges and vulnerabilities that threaten the integrity and efficiency of the ecosystem. This study identifies critical issues such as Transaction Order Dependence (TOD), Blockchain Extractable Value (BEV), and Transaction Importance Diversity (TID), which collectively undermine the fairness and security of DeFi systems. BEV-related activities, including sandwich attacks, liquidations, transaction replay etc. have emerged as significant threats, collectively generating $540.54 million in losses over 32 months across 11,289 addresses, involving 49,691 cryptocurrencies and 60,830 on-chain markets. These attacks exploit transaction mechanics to manipulate asset prices and extract value at the expense of other participants, with sandwich attacks being particularly impactful. Additionally, the growing adoption of blockchain in traditional finance highlights the challenge of TID, wherein high transaction volumes can strain systems and compromise time-sensitive operations. To address these pressing issues, we propose a novel Distributed Transaction Sequencing Strategy (DTSS) that integrates forking mechanisms with an Analytic Hierarchy Process (AHP) to enforce fair and transparent transaction ordering in a decentralized manner. Our approach is further enhanced by an optimization framework and the introduction of a Normalized Allocation Disparity Metric (NADM) that ensures optimal parameter selection for transaction prioritization. Experimental evaluations demonstrated that the DTSS effectively mitigated BEV risks, enhanced transaction fairness, and significantly improved the security and transparency of DeFi ecosystems.
Keywords
Blockchain
/
Transaction ordering
/
Blockchain extractable value
/
Distributed transaction sequencing strategy
Cite this article
Download citation ▾
Xiongfei Zhao, Hou-Wan Long, Zhengzhe Li, Jiangchuan Liu, Yain-Whar Si.
Mitigating Blockchain Extractable Value threats by Distributed Transaction Sequencing Strategy✩.
, 2025, 11(5): 1394-1409 DOI:10.1016/j.dcan.2025.04.004
| [1] |
L. Zhou, K. Qin, C.F. Torres, D.V. Le, A. Gervais, High-frequency trading on decen- tralized on-chain exchanges, in: 2021 IEEE Symposium on Security and Privacy (SP), IEEE, 2021, pp. 428-445.
|
| [2] |
F. Tang, Y. Liu, Q. Zhao, Y. Cheng, Real-time discovery and mining system of blockchain extractable value for decentralized finance protocol optimization, IEEE Trans. Comput. Soc. Syst. 11 (4) (2024) 5536-5553.
|
| [3] |
K. Qin, L. Zhou, A. Gervais, Quantifying blockchain extractable value: how dark is the forest? in: 2022 IEEE Symposium on Security and Privacy (SP), IEEE, 2022, pp. 198-214.
|
| [4] |
S. Goel, A. Singh, R. Garg, M. Verma, P. Jayachandran, Resource fairness and pri- oritization of transactions in permissioned blockchain systems (industry track),in: Middleware’18, Association for Computing Machinery, New York, NY, USA, 2018, pp. 46-53.
|
| [5] |
R. Auer, J. Frost, J.M.V. Pastor, et al., Miners as intermediaries: extractable value and market manipulation in crypto and defi, Tech. Rep., Bank for International Set- tlements, 2022.
|
| [6] |
A. Kosba, A. Miller, E. Shi, Z. Wen, C. Papamanthou,Hawk: the blockchain model of cryptography and privacy-preserving smart contracts, in: 2016 IEEE Symposium on Security and Privacy (SP), 2016, pp. 839-858.
|
| [7] |
L. Luu, D.-H. Chu, H. Olickel, P. Saxena, A. Hobor, Making Smart Contracts Smarter, in: CCS’16, Association for Computing Machinery, New York, NY, USA, 2016, pp. 254-269.
|
| [8] |
P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach, A. Juels,Flash boys 2.0: frontrunning in decentralized exchanges, miner extractable value, and consensus instability, in: 2020 IEEE Symposium on Security and Privacy (SP), IEEE, 2020, pp. 910-927.
|
| [9] |
M. Kelkar, F. Zhang, S. Goldfeder, A. Juels, Order-fairness for Byzantine consensus, in: D. Micciancio, T.Ristenpart (Advancesin Cryptology - CRYPTO Eds.), 2020, Springer International Publishing, Cham, 2020, pp. 451-480.
|
| [10] |
M. Kelkar, S. Deb, S. Kannan, Order-Fair Consensus in the Permissionless Setting, in: APKC’22, Association for Computing Machinery, New York, NY, USA, 2022, pp. 3-14.
|
| [11] |
L. Zhou, K. Qin, A. Gervais,A2mm: mitigating frontrunning, transaction reordering and consensus instability in decentralized exchanges, arXiv:2106. 07371, 2021.
|
| [12] |
C. Decker, R. Wattenhofer,Information propagation in the bitcoin network, in: IEEE P2P 2013 Proceedings, 2013, pp. 1-10.
|
| [13] |
Q. Liu, Y. Xu, B. Cao, L. Zhang, M. Peng, Unintentional forking analysis in wireless blockchain networks, Digit. Commun. Netw. 7 (3) (2021) 335-341.
|
| [14] |
T.L. Saaty, L.G. Vargas, T.L. Saaty, L.G. Vargas, The Analytic Network Process, Springer, 2013.
|
| [15] |
G.-H. Tzeng, J.-J. Huang, Multiple Attribute Decision Making:Methods and Appli- cations, CRC Press, 2011.
|
| [16] |
J.R. Figueira, S. Greco, B. Roy, R. Słowiński, An overview of electre methods and their recent extensions, J. Multi-Criteria Decis. Anal. 20 (1-2) (2013) 61-85.
|
| [17] |
A. Afshari, M. Mojahed, R.M. Yusuff, Simple additive weighting approach to person- nel selection problem, Int. J. Innov. Technol. Manag. 1 (5) (2010) 511.
|
| [18] |
D. Von Winterfeldt, G.W. Fischer, Multi-attribute utility theory: models and assess- ment procedures,in: Utility, Probability, and Human Decision Making: Selected Pro- ceedings of an Interdisciplinary Research Conference, Rome, 3-6 September, 1973, Springer, 1975, pp. 47-85.
|
| [19] |
K.P.A. Halim, H. Jatnika, A.A. Muin, D. Agustini, M. Farida, N. Hidayati, A. Waluyo, et al., Vise kriterijumska optimizacija i kompromisno resenje (VIKOR) algorithm for analysis as supporting system, J. Phys. Conf. Ser. 2394 (2022) 012001, IOP Publish- ing.
|
| [20] |
W.F. Bowlin, Measuring performance: an introduction to data envelopment analysis (dea), J. Cost Anal. 15 (2) (1998) 3-27.
|
| [21] |
M. Tamiz, D. Jones, C. Romero, Goal programming for decision making: an overview of the current state-of-the-art, Eur. J. Oper. Res. 111 (3) (1998) 569-581.
|
| [22] |
R. Banno, K. Shudo, Simulating a blockchain network with SimBlock, in: 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), 2019, pp. 3-4.
|
| [23] |
S. Das, P.N. Suganthan, Differential evolution: a survey of the state-of-the-art, IEEE Trans. Evol. Comput. 15 (1) (2011) 4-31.
|
| [24] |
R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: MHS’95, Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE, 1995, pp. 39-43.
|
| [25] |
I. Ahmadianfar, O. Bozorg-Haddad, X. Chu, Gradient-based optimizer: a new meta- heuristic optimization algorithm, Inf. Sci. 540 (2020) 131-159.
|
| [26] |
O. Kuznetsov, D. Kanonik, A. Rusnak, A. Yezhov, O. Domin, K. Kuznetsova, Adap- tive merkle trees for enhanced blockchain scalability, Internet of Things 27 (2024) 101315.
|
| [27] |
P. Tschipper, Xtreme thinblocks, https://github.com/BitcoinUnlimited/BUIP/blob/master/010.md. (Accessed 13 May 2022).
|
| [28] |
M. Corallo, Compact block, https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki. (Accessed 13 May 2022).
|
| [29] |
A.P. Ozisik, G. Andresen, B.N. Levine, D. Tapp, G. Bissias, S. Katkuri, Graphene: ef- ficient interactive set reconciliation applied to blockchain propagation, in: Proceed- ings of the ACM Special Interest Group on Data Communication, 2019, pp. 303-317.
|
| [30] |
J. Poon, T. Dryja, The Bitcoin Lightning Network: Scalable Off-Chain Instant Pay- ments, Independently published, 2016.
|
| [31] |
C.K. Dehury, S.N. Srirama, P.K. Donta, S. Dustdar, Securing clustered edge intelli- gence with blockchain, IEEE Consum. Electron. Mag. 13 (1) (2024) 22-29.
|
| [32] |
B. Sedlak, I. Murturi, P.K. Donta, S. Dustdar, A privacy enforcing framework for data streams on the edge, IEEE Trans. Emerg. Top. Comput. (2023) 1-12.
|