Role of deep learning in cognitive healthcare: Wearable signal analysis, algorithms, benefits, and challenges

Md. Sakib Bin Alam , Aiman Lameesa , Senzuti Sharmin , Shaila Afrin , Shams Forruque Ahmed , Mohammad Reza Nikoo , Amir H. Gandomi

›› 2025, Vol. 11 ›› Issue (3) : 642 -670.

PDF
›› 2025, Vol. 11 ›› Issue (3) : 642 -670. DOI: 10.1016/j.dcan.2025.04.001
Original article

Role of deep learning in cognitive healthcare: Wearable signal analysis, algorithms, benefits, and challenges

Author information +
History +
PDF

Abstract

Deep Learning (DL) offers promising solutions for analyzing wearable signals and gaining valuable insights into cognitive disorders. While previous review studies have explored various aspects of DL in cognitive healthcare, there remains a lack of comprehensive analysis that integrates wearable signals, data processing techniques, and the broader applications, benefits, and challenges of DL methods. Addressing this limitation, our study provides an extensive review of DL's role in cognitive healthcare, with a particular emphasis on wearables, data processing, and the inherent challenges in this field. This review also highlights the considerable promise of DL approaches in addressing a broad spectrum of cognitive issues. By enhancing the understanding and analysis of wearable signal modalities, DL models can achieve remarkable accuracy in cognitive healthcare. Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and Long Short-term Memory (LSTM) networks have demonstrated improved performance and effectiveness in the early diagnosis and progression monitoring of neurological disorders. Beyond cognitive impairment detection, DL has been applied to emotion recognition, sleep analysis, stress monitoring, and neurofeedback. These applications lead to advanced diagnosis, personalized treatment, early intervention, assistive technologies, remote monitoring, and reduced healthcare costs. Nevertheless, the integration of DL and wearable technologies presents several challenges, such as data quality, privacy, interpretability, model generalizability, ethical concerns, and clinical adoption. These challenges emphasize the importance of conducting future research in areas such as multimodal signal analysis and explainable AI. The findings of this review aim to benefit clinicians, healthcare professionals, and society by facilitating better patient outcomes in cognitive healthcare.

Keywords

Cognitive healthcare / Deep learning / Wearable sensor / Convolutional neural network / Recurrent neural network

Cite this article

Download citation ▾
Md. Sakib Bin Alam, Aiman Lameesa, Senzuti Sharmin, Shaila Afrin, Shams Forruque Ahmed, Mohammad Reza Nikoo, Amir H. Gandomi. Role of deep learning in cognitive healthcare: Wearable signal analysis, algorithms, benefits, and challenges. , 2025, 11(3): 642-670 DOI:10.1016/j.dcan.2025.04.001

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Md. Sakib Bin Alam: Writing - original draft, Visualization, Formal analysis, Conceptualization. Aiman Lameesa: Writing - original draft, Visualization, Investigation. Senzuti Sharmin: Writing - original draft, Formal analysis. Shaila Afrin: Writing - original draft, Investigation. Shams Forruque Ahmed: Writing - review & editing, Supervision, Methodology, Conceptualization. Mohammad Reza Nikoo: Writing - review & editing, Software, Resources. Amir H. Gandomi: Writing - review & editing, Visualization, Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors highly express their gratitude to the Asian Institute of Technology, Khlong Nueng, Thailand for their support in carrying out this study.

References

[1]

K.R. Singh, S. Dash, Early detection of neurological diseases using machine learning and deep learning techniques: a review,in: Artificial Intelligence for Neurological Disorders, Elsevier, 2023, pp. 1-24.

[2]

S.F. Ahmed, M.S.B. Alam, M. Hassan, M.R. Rozbu, T. Ishtiak, N. Rafa, M. Mofijur, A.B.M. Shawkat Ali, A.H. Gandomi, Deep learning modelling techniques: current progress, applications, advantages, and challenges, Artif. Intell. Rev. 56 (11) (2023) 13521-13617.

[3]

S. Eken, Medical data analysis for different data types, Int. J. Comput. Exp. Sci. Eng. 6 (3) (2020) 138-144.

[4]

N.K. Iyortsuun, S.-H. Kim, M. Jhon, H.-J. Yang, S. Pant, A review of machine learning and deep learning approaches on mental health diagnosis, Healthcare (Basel) 11 (3) (2023).

[5]

H.N. Fakhouri, S. Alawadi, F.M. Awaysheh, F. Alkhabbas, J. Zraqou, A cognitive deep learning approach for medical image processing, Sci. Rep. 14 (1) (2024) 4539.

[6]

A.K. Munnangi, S. UdhayaKumar, V. Ravi, R. Sekaran, S. Kannan, Survival study on deep learning techniques for IoT enabled smart healthcare system, Health Technol. (Berl.) 13 (2) (2023) 215-228.

[7]

A. Khanna, P. Selvaraj, D. Gupta, T.H. Sheikh, P.K. Pareek, V. Shankar, Internet of things and deep learning enabled healthcare disease diagnosis using biomedical electrocardiogram signals, Expert Syst. 40 (4) (2023).

[8]

S. M, A. Murugappan, M. T, Cognitive computing technological trends and future research directions in healthcare - a systematic literature review, Artif. Intell. Med. 138 (102513) (2023) 102513.

[9]

Z. Zhou, M.A. Asghar, D. Nazir, K. Siddique, M. Shorfuzzaman, R.M. Mehmood, An AI-empowered affect recognition model for healthcare and emotional well-being using physiological signals, Clust. Comput. 26 (2) (2023) 1253-1266.

[10]

A. Pradhan, S. Srivastava, Hierarchical extreme puzzle learning machine-based emotion recognition using multimodal physiological signals, Biomed. Signal Process. Control 83 (104624) (2023) 104624.

[11]

A.H. Sodhro, C. Sennersten, A. Ahmad, Towards cognitive authentication for smart healthcare applications, Sensors (Basel) 22 (6) (2022).

[12]

S. Das, A. Ghosh, S. Saha, A review on gaming effects on cognitive load for smart healthcare and its security, in: Advances in Medical Technologies and Clinical Practice, IGI Global, 2022, pp. 1-28.

[13]

S. Kalantari, V. Tripathi, J. Kan, J.D. Rounds, A. Mostafavi, R. Snell, J.G. CruzGarza, Evaluating the impacts of color, graphics, and architectural features on wayfinding in healthcare settings using EEG data and virtual response testing, J. Environ. Psychol. 79 (101744) (2022) 101744.

[14]

D. Mahmood, H.N. Riaz, H. Nisar, Introduction to non-invasive biomedical signals for healthcare, in: Advances in Non-Invasive Biomedical Signal Sensing and Processing with Machine Learning, Springer International Publishing, Cham, 2023, pp. 1-24.

[15]

B. Pradhan, S. Bhattacharyya, K. Pal, IoT-based applications in healthcare devices, J. Healthcare Eng. 2021 ( 2021) 6632599.

[16]

E. Teixeira, H. Fonseca, F. Diniz-Sousa, L. Veras, G. Boppre, J. Oliveira, D. Pinto, A.J. Alves, A. Barbosa, R. Mendes, I. Marques-Aleixo, Wearable devices for physical activity and healthcare monitoring in elderly people: a critical review, Geriatrics (Basel) 6 (2) (2021) 38.

[17]

A. Garcia-Requejo, M.C. Perez-Rubio, J.M. Villadangos, A. Hernandez, Activity monitoring and location sensory system for people with mild cognitive impairments, IEEE Sens. J. 23 (5) (2023) 5448-5458.

[18]

N.H. Kim, U. Park, S.W. Kang,PET-validated EEG-machine learning algorithm predicts brain amyloid pathology in pre-dementia Alzheimer’s disease, Gerontechnology 21 (s) (2022) 2.

[19]

K. Li, B. Ao, X. Wu, Q. Wen, E. Ul Haq, J. Yin, Parkinson’s disease detection and classification using EEG based on deep CNN-LSTM model, Biotechnol. Genet. Eng. Rev. (2023) 1-20.

[20]

A.C. Cameron, G.Y.H. Lip, A.H. Abdul-Rahim, Machine-learning-derived heart and brain age are independently associated with cognition, Eur. J. Neurol. 30 (9) (2023) 2589-2590.

[21]

Y. Wu, M. Daoudi, A. Amad, Transformer-based self-supervised multimodal representation learning for wearable emotion recognition, IEEE Trans. Affect. Comput. (2023) 1-16.

[22]

M. Rossi, D. Sala, D. Bovio, C. Salito, G. Alessandrelli, C. Lombardi, L. Mainardi, P. Cerveri, SLEEP-SEE-THROUGH: explainable deep learning for sleep event detection and quantification from wearable somnography, IEEE J. Biomed. Health Inform. 27 (7) (2023) 3129-3140.

[23]

G. Vos, K. Trinh, Z. Sarnyai, M. Rahimi Azghadi, Generalizable machine learning for stress monitoring from wearable devices: a systematic literature review, Int. J. Med. Inform. 173 (105026) (2023) 105026.

[24]

M.B. Bin Heyat, F. Akhtar, S.J. Abbas, M. Al-Sarem, A. Alqarafi, A. Stalin, R. Abbasi, A.Y. Muaad, D. Lai, K. Wu, Wearable flexible electronics based cardiac electrode for researcher mental stress detection system using machine learning models on single lead electrocardiogram signal, Biosensors (Basel) 12 (6) (2022) 427.

[25]

P. Pandey, J. Rodriguez-Larios, K.P. Miyapuram, D. Lomas,Detecting moments of distraction during meditation practice based on changes in the EEG signal, in: 2023 IEEE Applied Sensing Conference (APSCON), IEEE, 2023.

[26]

Y. Jeon, J. Kang, B.C. Kim, K.H. Lee, J.-I. Song, J. Gwak, Early Alzheimer’s disease diagnosis using wearable sensors and multilevel gait assessment: a machine learning ensemble approach, IEEE Sens. J. (2023) 1.

[27]

T.M. Rutkowski, M.S. Abe, M. Otake-Matsuura,Neurotechnology and AI approach for early dementia onset biomarker from EEG in emotional stimulus evaluation task, in: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), IEEE, 2021.

[28]

A.G. Sreedevi, T. Nitya Harshitha, V. Sugumaran, P. Shankar, Application of cognitive computing in healthcare, cybersecurity, big data and IoT: a literature review, Inf. Process. Manag. 59 (2) (2022) 102888.

[29]

Y.Y.M. Aung, D.C.S. Wong, D.S.W. Ting, The promise of artificial intelligence: a review of the opportunities and challenges of artificial intelligence in healthcare, Br. Med. Bull. 139 (1) (2021) 4-15.

[30]

S.K. Bhattamisra, P. Banerjee, P. Gupta, J. Mayuren, S. Patra, M. Candasamy, Artificial intelligence in pharmaceutical and healthcare research, Big Data Cogn. Comput. 7 (1) (2023) 10.

[31]

A.R. Javed, H.U. Khan, M.K.B. Alomari, M.U. Sarwar, M. Asim, A.S. Almadhor, M.Z. Khan, Toward explainable AI-empowered cognitive health assessment, Front. Public Health 11 (2023) 1024195.

[32]

P.N. Srinivasu, N. Sandhya, R.H. Jhaveri, R. Raut, From blackbox to explainable AI in healthcare: existing tools and case studies, Mob. Inf. Syst. 2022 ( 2022) 1-20.

[33]

H. Zhou, J.-Y. Gao, Y. Chen, The paradigm and future value of the metaverse for the intervention of cognitive decline, Front. Public Health 10 (2022) 1016680.

[34]

M. Manickam, G.G. Devarajan, An improved three factor authentication protocol for wireless body area networks, Cyber Secur. Appl. 3 (2025) 100062.

[35]

S.M. Nagarajan, G.G. Deverajan, U. Kumaran, M. Thirunavukkarasan, M.D. Alshehri, S. Alkhalaf,Secure data transmission in Internet of medical things using res-256 algorithm, IEEE Trans. Ind. Inform. 18 (12) (2021) 8876-8884.

[36]

S.M. Nagarajan, G.G. Devarajan, A.S. Mohammed, T. Ramana, U. Ghosh, Intelligent task scheduling approach for iot integrated healthcare cyber physical systems, IEEE Trans. Netw. Sci. Eng. 10 (5) (2022) 2429-2438.

[37]

D.-E.-M. Nisar, R. Amin, N.-U.-H. Shah, M.A.A. Ghamdi, S.H. Almotiri, M. Alruily, Healthcare techniques through deep learning: issues, challenges and opportunities, IEEE Access 9 (2021) 98523-98541.

[38]

R. Manne, S.C. Kantheti, Application of artificial intelligence in healthcare: chances and challenges, Curr. J. Appl. Sci. Technol. (2021) 78-89.

[39]

N. Dai, I.M. Lei, Z. Li, Y. Li, P. Fang, J. Zhong, Recent advances in wearable electromechanical sensors-moving towards machine learning-assisted wearable sensing systems, Nano Energy 105 (108041) (2023) 108041.

[40]

W. Schmid, Y. Fan, T. Chi, E. Golanov, A.S. Regnier-Golanov, R.J. Austerman, K. Podell, P. Cherukuri, T. Bentley, C.T. Steele, S. Schodrof, B. Aazhang, G.W. Britz, Review of wearable technologies and machine learning methodologies for systematic detection of mild traumatic brain injuries, J. Neural Eng. 18 (4) (2021) 041006.

[41]

G.Y. Gombolay, N. Gopalan, A. Bernasconi, R. Nabbout, J.T. Megerian, B. Siegel, J. Hallman-Cooper, S. Bhalla, M.C. Gombolay, Review of machine learning and artificial intelligence (ML/AI) for the pediatric neurologist, Pediatr. Neurol. 141 (2023) 42-51.

[42]

M.A. Myszczynska, P.N. Ojamies, A.M.B. Lacoste, D. Neil, A. Saffari, R. Mead, G.M. Hautbergue, J.D. Holbrook, L. Ferraiuolo, Applications of machine learning to diagnosis and treatment of neurodegenerative diseases, Nat. Rev. Neurol. 16 (8) (2020) 440-456.

[43]

S.A. Graham, E.E. Lee, D.V. Jeste, R. Van Patten, E.W. Twamley, C. Nebeker, Y. Yamada, H.-C. Kim, C.A. Depp, Artificial intelligence approaches to predicting and detecting cognitive decline in older adults: a conceptual review, Psychiatry Res. 284 (112732) (2020) 112732.

[44]

S. Shanmuga Raju, B. Paulchamy, K. Rajarajeswari, S. Nithyadevi, Future of medicine in cognitive technologies and automatic detection via computational techniques, in: Translating Healthcare Through Intelligent Computational Methods, Springer International Publishing, Cham, 2023, pp. 373-393.

[45]

M. Kaleem, G.G. Devarajan,Techniques to ensure quality of service in wireless body area network: a survey, in: 2023 International Conference on Sustainable Emerging Innovations in Engineering and Technology (ICSEIET), IEEE, 2023, pp. 812-819.

[46]

J. Xie, Q. Chen, H. Shen, G. Li, Review - wearable graphene devices for sensing, J. Electrochem. Soc. 167 (3) (2020) 037541.

[47]

A.J. Casson, Wearable EEG and beyond, Biomed. Eng. Lett. 9 (1) (2019) 53-71.

[48]

S.M.A. Iqbal, I. Mahgoub, E. Du, M.A. Leavitt, W. Asghar, Advances in healthcare wearable devices, Npj Flex. Electron. 5 (1) (2021).

[49]

J. Singh, M.A. Hamid, Cognitive computing in mental healthcare: a review of methods and technologies for detection of mental disorders, Cogn. Comput. 14 (6) (2022) 2169-2186.

[50]

E. Teixeira, H. Fonseca, F. Diniz-Sousa, L. Veras, G. Boppre, J. Oliveira, D. Pinto, A.J. Alves, A. Barbosa, R. Mendes, et al., Wearable devices for physical activity and healthcare monitoring in elderly people: a critical review, Geriatrics 6 (2) (2021) 38.

[51]

A. Decelle, C. Furtlehner, B. Seoane,Equilibrium and non-equilibrium regimes in the learning of restricted Boltzmann machines, Adv. Neural Inf. Process. Syst. 34 (2021) 5345-5359.

[52]

B. Kumar, O. Dikshit, A. Gupta, M.K. Singh, Feature extraction for hyperspectral image classification: a review, Int. J. Remote Sens. 41 (16) (2020) 6248-6287.

[53]

C. Fei, R. Liu, Z. Li, T. Wang, F.N. Baig, Machine and deep learning algorithms for wearable health monitoring, in: Computational Intelligence in Healthcare, Springer, 2021, pp. 105-160.

[54]

S. Zhang, Y. Li, S. Zhang, F. Shahabi, S. Xia, Y. Deng, N. Alshurafa, Deep learning in human activity recognition with wearable sensors: a review on advances, Sensors 22 (4) (2022) 1476.

[55]

G. Li, C.H. Lee, J.J. Jung, Y.C. Youn, D. Camacho, Deep learning for EEG data analytics: a survey, Concurr. Comput. 32 (18) (2020) e5199.

[56]

Y. Roy, H. Banville, I. Albuquerque, A. Gramfort, T.H. Falk, J. Faubert, Deep learning-based electroencephalography analysis: a systematic review, J. Neural Eng. 16 (5) (2019) 051001.

[57]

S. Gong, K. Xing, A. Cichocki, J. Li, Deep learning in EEG: advance of the last tenyear critical period, IEEE Trans. Cogn. Dev. Syst. 14 (2) (2022) 348-365.

[58]

M.R. Khalife, R.C. Scott, A.E. Hernan, Mechanisms for cognitive impairment in epilepsy: moving beyond seizures, Front. Neurol. 13 (2022) 878991.

[59]

Y. Gao, B. Gao, Q. Chen, J. Liu, Y. Zhang, Deep convolutional neural networkbased epileptic electroencephalogram (EEG) signal classification, Front. Neurol. 11 (2020) 375.

[60]

D. Ahmedt-Aristizabal, T. Fernando, S. Denman, J.E. Robinson, S. Sridharan, P.J. Johnston, K.R. Laurens, C. Fookes, Identification of children at risk of schizophrenia via deep learning and EEG responses, IEEE J. Biomed. Health Inform. 25 (1) (2021) 69-76.

[61]

A.A. Casciola, S.K. Carlucci, B.A. Kent, A.M. Punch, M.A. Muszynski, D. Zhou, A. Kazemi, M.S. Mirian, J. Valerio, M.J. McKeown, H.B. Nygaard, A deep learning strategy for automatic sleep staging based on two-channel EEG headband data, Sensors (Basel) 21 (10) (2021) 3316.

[62]

S. Chatterjee, R.S. Thakur, R.N. Yadav, L. Gupta, D.K. Raghuvanshi, Review of noise removal techniques in ECG signals, IET Signal Process. 14 (9) (2020) 569-590.

[63]

R. Kher, et al., Signal processing techniques for removing noise from ecg signals, J. Biomed. Eng. Res. 3 (101) (2019) 1-9.

[64]

F. Baty, M. Boesch, S. Widmer, S. Annaheim, P. Fontana, M. Camenzind, R.M. Rossi, O.D. Schoch, M.H. Brutsche, Classification of sleep apnea severity by electrocardiogram monitoring using a novel wearable device, Sensors (Basel) 20 (1) (2020) 286.

[65]

M. Elgendi, C. Menon, Assessing anxiety disorders using wearable devices: challenges and future directions, Brain Sci. 9 (3) (2019) 50.

[66]

A. Zarei, H. Beheshti, B.M. Asl, Detection of sleep apnea using deep neural networks and single-lead ECG signals, Biomed. Signal Process. Control 71 (103125) (2022) 103125.

[67]

A. Peimankar, S. Puthusserypady, DENS-ECG: a deep learning approach for ECG signal delineation, Expert Syst. Appl. 165 (113911) (2021) 113911.

[68]

A. Ullah, S.U. Rehman, S. Tu, R.M. Mehmood, Fawad, M. Ehatisham-Ul-Haq, A hybrid deep CNN model for abnormal arrhythmia detection based on cardiac ECG signal, Sensors (Basel) 21 (3) (2021) 951.

[69]

D. Buongiorno, G.D. Cascarano, A. Brunetti, I. De Feudis, V. Bevilacqua, A survey on deep learning in electromyographic signal analysis, in: Intelligent Computing Methodologies,in: Lecture Notes in Computer Science, Springer International Publishing, Cham, 2019, pp. 751-761.

[70]

D.C. Toledo-Pérez, J. Rodríguez-Reséndiz, R.A. Gómez-Loenzo, J.C. JaureguiCorrea, Support vector machine-based EMG signal classification techniques: a review, Appl. Sci. (Basel) 9 (20) (2019) 4402.

[71]

V. Gohel, N. Mehendale, Review on electromyography signal acquisition and processing, Biophys. Rev. 12 (6) (2020) 1361-1367.

[72]

S.A. Raurale, J. McAllister, J.M.D. Rincon, EMG biometric systems based on different wrist-hand movements, IEEE Access 9 (2021) 12256-12266.

[73]

M.A. Ozdemir, D.H. Kisa, O. Guren, A. Onan, A. Akan,EMG based hand gesture recognition using deep learning, in: 2020 Medical Technologies Congress (TIPTEKNO), IEEE, 2020.

[74]

E.A. Chung, M.E. Benalcazar,Real-time hand gesture recognition model using deep learning techniques and EMG signals, in: 2019 27th European Signal Processing Conference (EUSIPCO), IEEE, 2019.

[75]

J. Yu, S. Park, S.-H. Kwon, C.M.B. Ho, C.-S. Pyo, H. Lee, AI-based stroke disease prediction system using real-time electromyography signals, Appl. Sci. (Basel) 10 (19) (2020) 6791.

[76]

A.K. Bursais, J.A. Gentles, N.M. Albujulaya, M.H. Stone, Field based assessment of a tri-axial accelerometers validity to identify steps and reliability to quantify external load, Front. Physiol. 13 (2022) 942954.

[77]

A. Leroux, R. Rzasa-Lynn, C. Crainiceanu, T. Sharma, Wearable devices: current status and opportunities in pain assessment and management, Digit. Biomark. 5 (1) (2021) 89-102.

[78]

R. Mc Ardle, S. Del Din, B. Galna, A. Thomas, L. Rochester, Differentiating dementia disease subtypes with gait analysis: feasibility of wearable sensors?, Gait Posture 76 (2020) 372-376.

[79]

J. Barth, J.W. Klaesner, C.E. Lang, Relationships between accelerometry and general compensatory movements of the upper limb after stroke, J. NeuroEng. Rehabil. 17 (1) (2020) 138.

[80]

M. Wainberg, S.E. Jones, L.M. Beaupre, S.L. Hill, D. Felsky, M.A. Rivas, A.S.P. Lim, H.M. Ollila, S.J. Tripathy,Association of accelerometer-derived sleep measures with lifetime psychiatric diagnoses: a cross-sectional study of 89,205 participants from the UK biobank, PLoS Med. 18 (10) (2021) e1003782.

[81]

V. Nunavath, S. Johansen, T.S. Johannessen, L. Jiao, B.H. Hansen, S. Berntsen, M. Goodwin, Deep learning for classifying physical activities from accelerometer data, Sensors (Basel) 21 (16) (2021) 5564.

[82]

V. Farrahi, U. Muhammad, M. Rostami, M. Oussalah, AccNet24: a deep learning framework for classifying 24-hour activity behaviours from wrist-worn accelerometer data under free-living environments, Int. J. Med. Inform. 172 (105004) (2023) 105004.

[83]

S. Bringas, S. Salomón, R. Duque, C. Lage, J.L. Montaña, Alzheimer’s disease stage identification using deep learning models, J. Biomed. Inform. 109 (103514) (2020) 103514.

[84]

P. Singh, N. Singh, K.K. Singh, A. Singh, Diagnosing of disease using machine learning, in: Machine Learning and the Internet of Medical Things in Healthcare, Elsevier, 2021, pp. 89-111.

[85]

S. Misra, H. Li, J. He, Robust geomechanical characterization by analyzing the performance of shallow-learning regression methods using unsupervised clustering methods, in: Machine Learning for Subsurface Characterization, Elsevier, 2020, pp. 129-155.

[86]

S. Aziz, M.U. Khan, F. Aamir, M.A. Javid,Electromyography (EMG) data-driven load classification using empirical mode decomposition and feature analysis, in: 2019 International Conference on Frontiers of Information Technology (FIT), IEEE, 2019.

[87]

J. Yim, K.-A. Sohn,Enhancing the performance of convolutional neural networks on quality degraded datasets, in: 2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA), IEEE, 2017.

[88]

P. Kanani, M. Padole,ECG heartbeat arrhythmia classification using time-series augmented signals and deep learning approach, Proc. Comput. Sci. 171 (2020) 524-531.

[89]

U.R. Alo, H.F. Nweke, Y.W. Teh, G. Murtaza, Smartphone motion sensor-based complex human activity identification using deep stacked autoencoder algorithm for enhanced smart healthcare system, Sensors (Basel) 20 (21) (2020) 6300.

[90]

G. Bouallegue, R. Djemal, S.A. Alshebeili, H. Aldhalaan, A dynamic filtering DFRNN deep-learning-based approach for EEG-based neurological disorders diagnosis, IEEE Access 8 (2020) 206992-207007.

[91]

M.S. Bin Alam, M.J.A. Patwary, M. Hassan,Birth mode prediction using bagging ensemble classifier: a case study of Bangladesh, in: 2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD), IEEE, 2021.

[92]

M. Almutairi, L.A. Gabralla, S. Abubakar, H. Chiroma, Detecting elderly behaviors based on deep learning for healthcare: recent advances, methods, real-world applications and challenges, IEEE Access 10 (2022) 69802-69821.

[93]

A. Khan, S. Zubair, Development of a three tiered cognitive hybrid machine learning algorithm for effective diagnosis of Alzheimer’s disease, J. King Saud Univ, Comput. Inf. Sci. 34 (10) (2022) 8000-8018.

[94]

M. Bucholc, S. Titarenko, X. Ding, C. Canavan, T. Chen, A hybrid machine learning approach for prediction of conversion from mild cognitive impairment to dementia, Expert Syst. Appl. 217 (2023) 119541.

[95]

P. Balaji, M.A. Chaurasia, S.M. Bilfaqih, A. Muniasamy, L.E.G. Alsid, Hybridized deep learning approach for detecting Alzheimer’s disease, Biomedicines 11 (1) (2023) 149.

[96]

F. Zhu, Q. Liang, OCRNN: an orthogonal constrained recurrent neural network for sleep analysis based on EEG data, Ad Hoc Netw. 104 (102178) (2020) 102178.

[97]

C. Sun, H. Li, L. Ma, Speech emotion recognition based on improved masking EMD and convolutional recurrent neural network, Front. Psychol. 13 (2022) 1075624.

[98]

A. Iyer, S.S. Das, R. Teotia, S. Maheshwari, R.R. Sharma, CNN and LSTM based ensemble learning for human emotion recognition using EEG recordings, Multimed. Tools Appl. 82 (4) (2023) 4883-4896.

[99]

H. Albaqami, G.M. Hassan, A. Datta, Automatic detection of abnormal EEG signals using WaveNet and LSTM, Sensors (Basel) 23 (13) (2023).

[100]

S. Qiu, M.I. Miller, P.S. Joshi, J.C. Lee, C. Xue, Y. Ni, Y. Wang, I. De Anda-Duran, P.H. Hwang, J.A. Cramer, et al., Multimodal deep learning for Alzheimer’s disease dementia assessment, Nat. Commun. 13 (1) (2022) 3404.

[101]

J. Venugopalan, L. Tong, H.R. Hassanzadeh, M.D. Wang, Multimodal deep learning models for early detection of Alzheimer’s disease stage, Sci. Rep. 11 (1) (2021) 3254.

[102]

P. Yang, G. Bi, J. Qi, X. Wang, Y. Yang, L. Xu,Multimodal wearable intelligence for dementia care in healthcare 4.0: a survey, Inf. Syst. Front. (2021) 1-18.

[103]

R. Kuttala, R. Subramanian, V.R.M. Oruganti, Multimodal hierarchical CNN feature fusion for stress detection, IEEE Access 11 (2023) 6867-6878.

[104]

R. Flores, M. Tlachac, E. Toto, E. Rundensteiner,Audiface: multimodal deep learning for depression screening,in:Machine Learning for Healthcare Conference, PMLR, 2022, pp. 609-630.

[105]

C. Simfukwe, Y.C. Youn, M.-J. Kim, J. Paik, S.-H. Han, CNN for a regression machine learning algorithm for predicting cognitive impairment using qEEG, Neuropsychiatr. Dis. Treat. 19 (2023) 851-863.

[106]

N. Rahim, S. El-Sappagh, S. Ali, K. Muhammad, J. Del Ser, T. Abuhmed, Prediction of Alzheimer’s progression based on multimodal deep-learning-based fusion and visual explainability of time-series data, Inf. Fusion 92 ( 2023) 363-388.

[107]

Z. Liu, H. Lu, X. Pan, M. Xu, R. Lan, X. Luo, Diagnosis of Alzheimer’s disease via an attention-based multi-scale convolutional neural network, Knowl.-Based Syst. 238 (2022) 107942.

[108]

M. Khojaste-Sarakhsi, S.S. Haghighi, S.F. Ghomi, E. Marchiori, Deep learning for Alzheimer’s disease diagnosis: a survey, Artif. Intell. Med. 130 (2022) 102332.

[109]

Y. Zhang, Q. Teng, Y. Liu, Y. Liu, X. He, Diagnosis of Alzheimer’s disease based on regional attention with smri gray matter slices, J. Neurosci. Methods 365 (2022) 109376.

[110]

B. Yan, Y. Li, L. Li, X. Yang, T.-q. Li, G. Yang, M. Jiang, Quantifying the impact of pyramid squeeze attention mechanism and filtering approaches on Alzheimer’s disease classification, Comput. Biol. Med. 148 (2022) 105944.

[111]

M. Zulqarnain, H. Shah, R. Ghazali, O. Alqahtani, R. Sheikh, M. Asadullah, Attention aware deep learning approaches for an efficient stress classification model, Brain Sci. 13 (7) (2023).

[112]

E. Sibilano, A. Brunetti, D. Buongiorno, M. Lassi, A. Grippo, V. Bessi, S. Micera, A. Mazzoni, V. Bevilacqua, An attention-based deep learning approach for the classification of subjective cognitive decline and mild cognitive impairment using resting-state eeg, J. Neural Eng. 20 (1) (2023) 016048.

[113]

M. Sadiq, M.T. Khan, S. Masood, Attention-based deep learning model for early detection of Parkinson’s disease, Comput. Mater. Continua 71 (3) (2022).

[114]

J. Xin, A. Wang, R. Guo, W. Liu, X. Tang, CNN and swin-transformer based efficient model for Alzheimer’s disease diagnosis with sMRI, Biomed. Signal Process. Control 86 (105189) (2023) 105189.

[115]

D. Chitradevi, S. Prabha, Analysis of brain sub regions using optimization techniques and deep learning method in Alzheimer disease, Appl. Soft Comput. 86 (2020) 105857.

[116]

J.Y. Choi, B. Lee, Combining of multiple deep networks via ensemble generalization loss, based on mri images, for Alzheimer’s disease classification, IEEE Signal Process. Lett. 27 (2020) 206-210.

[117]

W. Li, X. Lin, X. Chen,Detecting Alzheimer’s disease based on 4d fmri: an exploration under deep learning framework, Neurocomputing 388 (2020) 280-287.

[118]

S.D. Sharma, S. Sharma, R. Singh, A. Gehlot, N. Priyadarshi, B. Twala, Stress detection system for working pregnant women using an improved deep recurrent neural network, Electronics (Basel) 11 (18) (2022) 2862.

[119]

Z. Garip, E. Ekinci, K. Serbest, S. Eken, Chaotic marine predator optimization algorithm for feature selection in schizophrenia classification using eeg signals, Clust. Comput. (2024) 1-21.

[120]

B. Ghoraani, L.N. Boettcher, M.D. Hssayeni, A. Rosenfeld, M.I. Tolea, J.E. Galvin, Detection of mild cognitive impairment and Alzheimer’s disease using dual-task gait assessments and machine learning, Biomed. Signal Process. Control 64 (2021) 102249.

[121]

R. Shi, C. Sheng, S. Jin, Q. Zhang, S. Zhang, L. Zhang, C. Ding, L. Wang, L. Wang, Y. Han, et al., Generative adversarial network constrained multiple loss autoencoder: a deep learning-based individual atrophy detection for Alzheimer’s disease and mild cognitive impairment, Hum. Brain Mapp. 44 (3) (2023) 1129-1146.

[122]

İ.M. Baytaş, Predicting progression from mild cognitive impairment to Alzheimer’s dementia with adversarial attacks, IEEE J. Biomed. Health Inform. (2024).

[123]

R. Wang, V. Bashyam, Z. Yang, F. Yu, V. Tassopoulou, S.S. Chintapalli, I. Skampardoni, L.P. Sreepada, D. Sahoo, K. Nikita, et al., Applications of generative adversarial networks in neuroimaging and clinical neuroscience, NeuroImage 269 (2023) 119898.

[124]

D. Ravi, S.B. Blumberg, S. Ingala, F. Barkhof, D.C. Alexander, N.P. Oxtoby, A.D.N. Initiative, et al., Degenerative adversarial neuroimage nets for brain scan simulations: application in ageing and dementia, Med. Image Anal. 75 (2022) 102257.

[125]

Y. Zhao, B. Ma, P. Jiang, D. Zeng, X. Wang, S. Li, Prediction of Alzheimer’s disease progression with multi-information generative adversarial network, IEEE J. Biomed. Health Inform. 25 (3) (2020) 711-719.

[126]

H.W. Kim, H.E. Lee, S. Lee, K.T. Oh, M. Yun, S.K. Yoo,Slice-selective learning for Alzheimer’s disease classification using a generative adversarial network: a feasibility study of external validation, Eur. J. Nucl. Med. Mol. Imaging 47 (2020) 2197-2206.

[127]

T. Hulsen, Explainable artificial intelligence (XAI): concepts and challenges in healthcare, AI 4 (3) (2023) 652-666.

[128]

E. Khodabandehloo, D. Riboni, A. Alimohammadi, Healthxai: collaborative and explainable ai for supporting early diagnosis of cognitive decline, Future Gener. Comput. Syst. 116 (2021) 168-189.

[129]

D.W. Joyce, A. Kormilitzin, K.A. Smith, A. Cipriani, Explainable artificial intelligence for mental health through transparency and interpretability for understandability, npj Digit. Med. 6 (1) (2023) 6.

[130]

Y. Gao, N. Lewis, V.D. Calhoun, R.L. Miller, Interpretable LSTM model reveals transiently-realized patterns of dynamic brain connectivity that predict patient deterioration or recovery from very mild cognitive impairment, Comput. Biol. Med. 161 (2023) 107005.

[131]

T. Li, J. Wang, S. Li, K. Li, Probing latent brain dynamics in Alzheimer’s disease via recurrent neural network, Cogn. Neurodyn. (2023).

[132]

A.R. Javed, H.U. Khan, M.K.B. Alomari, M.U. Sarwar, M. Asim, A.S. Almadhor, M.Z. Khan, Toward explainable ai-empowered cognitive health assessment, Front. Public Health 11 (2023) 1024195.

[133]

Y. Chen, X. Qin, J. Wang, C. Yu, W. Gao, Fedhealth: a federated transfer learning framework for wearable healthcare, IEEE Intell. Syst. 35 (4) (2020) 83-93.

[134]

C. Chakraborty, S.M. Nagarajan, G.G. Devarajan, T. Ramana, R. Mohanty, Intelligent ai-based healthcare cyber security system using multi-source transfer learning method, ACM Trans. Sens. Netw. (2023).

[135]

S.F. Ahmed, M.S.B. Alam, S. Afrin, S.J. Rafa, N. Rafa, A.H. Gandomi, Insights into Internet of medical things (iomt): data fusion, security issues and potential solutions, Inf. Fusion 102 ( 2024) 102060.

[136]

S. Yang, F. Zhu, X. Ling, Q. Liu, P. Zhao, Intelligent health care: applications of deep learning in computational medicine, Front. Genet. 12 (2021) 607471.

[137]

A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou, C. Cui, G. Corrado, S. Thrun, J. Dean, A guide to deep learning in healthcare, Nat. Med. 25 (1) (2019) 24-29.

[138]

D. Bordoloi, V. Singh, S. Sanober, S.M. Buhari, J.A. Ujjan, R. Boddu, Deep learning in healthcare system for quality of service, J. Healthcare Eng. 2022 ( 2022) 8169203.

[139]

H.T. Gorji, N. Kaabouch, A deep learning approach for diagnosis of mild cognitive impairment based on MRI images, Brain Sci. 9 (9) (2019) 217.

[140]

J.H. Grand, S. Caspar, S.W. Macdonald, Clinical features and multidisciplinary approaches to dementia care, J. Multidiscip. Healthc. 4 (2011) 125-147.

[141]

S. Ng, V.L. Villemagne, S. Berlangieri, S.-T. Lee, M. Cherk, S.J. Gong, U. Ackermann, T. Saunder, H. Tochon-Danguy, G. Jones, C. Smith, G. O’Keefe, C.L. Masters, C.C. Rowe,Visual assessment versus quantitative assessment of 11C-PIB PET and 18FFDG PET for detection of Alzheimer’s disease, J. Nucl. Med. 48 (4) (2007) 547-552.

[142]

A. Drzezga, N. Lautenschlager, H. Siebner, M. Riemenschneider, F. Willoch, S. Minoshima, M. Schwaiger, A. Kurz,Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study, Eur. J. Nucl. Med. Mol. Imaging 30 (8) (2003) 1104-1113.

[143]

S. Schreiber, S.M. Landau, A. Fero, F. Schreiber, W.J. Jagust,Alzheimer’s disease neuroimaging initiative, comparison of visual and quantitative florbetapir F 18 positron emission tomography analysis in predicting mild cognitive impairment outcomes, JAMA Neurol. 72 (10) (2015) 1183--1190.

[144]

G. Chételat, B. Desgranges, V. de la Sayette, F. Viader, F. Eustache, J.-C. Baron, Mild cognitive impairment: can FDG-PET predict who is to rapidly convert to Alzheimer’s disease?, Neurology 60 (8) (2003) 1374-1377.

[145]

H. Choi, K.H. Jin, Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging, Behav. Brain Res. 344 (2018) 103-109.

[146]

C. Xue, C. Karjadi, I.C. Paschalidis, R. Au, V.B. Kolachalama, Detection of dementia on voice recordings using deep learning: a framingham heart study, Alzheimer’s Res. Ther. 13 (2021) 1-15.

[147]

A.M. Alvi, S. Siuly, H. Wang, K. Wang, F. Whittaker, A deep learning based framework for diagnosis of mild cognitive impairment, Knowl.-Based Syst. 248 (108815) (2022) 108815.

[148]

C. Feng, A. Elazab, P. Yang, T. Wang, F. Zhou, H. Hu, X. Xiao, B. Lei,Deep learning framework for Alzheimer’s disease diagnosis via 3D-CNN and FSBi-LSTM, IEEE Access 7 (2019) 63605-63618.

[149]

B.J. Abbaschian, D. Sierra-Sosa, A. Elmaghraby, Deep learning techniques for speech emotion recognition, from databases to models, Sensors (Basel) 21 (4) (2021) 1249.

[150]

L. Schoneveld, A. Othmani, H. Abdelkawy, Leveraging recent advances in deep learning for audio-visual emotion recognition, Pattern Recognit. Lett. 146 (2021) 1-7.

[151]

P. Pandey, K.R. Seeja, Subject independent emotion recognition from EEG using VMD and deep learning, J. King Saud Univ, Comput. Inf. Sci. 34 (5) (2022) 1730-1738.

[152]

R. Sharma, R.B. Pachori, P. Sircar, Automated emotion recognition based on higher order statistics and deep learning algorithm, Biomed. Signal Process. Control 58 (2020) 101867.

[153]

O. Yildirim, U.B. Baloglu, U.R. Acharya, A deep learning model for automated sleep stages classification using PSG signals, Int. J. Environ. Res. Public Health 16 (4) (2019) 599.

[154]

S. Mousavi, F. Afghah, U.R. Acharya, SleepEEGNet: automated sleep stage scoring with sequence to sequence deep learning approach, PLoS ONE 14 (5) (2019) e0216456.

[155]

E. Eldele, Z. Chen, C. Liu, M. Wu, C.-K. Kwoh, X. Li, C. Guan, An attention-based deep learning approach for sleep stage classification with single-channel EEG, IEEE Trans. Neural Syst. Rehabil. Eng. 29 (2021) 809-818.

[156]

D. Dey, S. Chaudhuri, S. Munshi, Obstructive sleep apnoea detection using convolutional neural network based deep learning framework, Biomed. Eng. Lett. 8 (2018) 95-100.

[157]

A. Sano,Measuring college students’ sleep, stress, mental health and wellbeing with wearable sensors and mobile phones, Ph.D. thesis, Massachusetts Institute of Technology, 2016.

[158]

T. Pereira, P.R. Almeida, J.P.S. Cunha, A. Aguiar, Heart rate variability metrics for fine-grained stress level assessment, Comput. Methods Programs Biomed. 148 (2017) 71-80.

[159]

K. Masood, M.A. Alghamdi, Modeling mental stress using a deep learning framework, IEEE Access 7 (2019) 68446-68454.

[160]

P. Bobade, M. Vani,Stress detection with machine learning and deep learning using multimodal physiological data, in: 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA), IEEE, 2020.

[161]

P. Zhang, F. Li, R. Zhao, R. Zhou, L. Du, Z. Zhao, X. Chen, Z. Fang, Real-time psychological stress detection according to ECG using deep learning, Appl. Sci. (Basel) 11 (9) (2021) 3838.

[162]

W. Seo, N. Kim, C. Park, S.-M. Park, Deep learning approach for detecting workrelated stress using multimodal signals, IEEE Sens. J. 22 (12) (2022) 11892-11902.

[163]

M.G.M. Saif, L. Sushkova, M. Fraser, Evaluation of neurofeedback therapy for treatment of central neuropathic pain in paraplegic patients using deep learning, SN Comput. Sci. 4 (5) (2023) 598.

[164]

O. Bichsel, L.H. Stieglitz, M.F. Oertel, C.R. Baumann, R. Gassert, L.L. Imbach, Deep brain electrical neurofeedback allows Parkinson patients to control pathological oscillations and quicken movements, Sci. Rep. 11 (1) (2021) 7973.

[165]

C. Cooney, A. Korik, R. Folli, D. Coyle, Evaluation of hyperparameter optimization in machine and deep learning methods for decoding imagined speech EEG, Sensors (Basel) 20 (16) (2020) 4629.

[166]

S. Roy, A. Chowdhury, K. McCreadie, G. Prasad, Deep learning based inter-subject continuous decoding of motor imagery for practical brain-computer interfaces, Front. Neurosci. 14 (2020) 918.

[167]

A.A.-A. Valliani, D. Ranti, E.K. Oermann, Deep learning and neurology: a systematic review, Neurol. Ther. 8 (2) (2019) 351-365.

[168]

P.-Y. Chiu, H. Tang, C.-Y. Wei, C. Zhang, G.-U. Hung, W. Zhou,NMD-12: a new machine-learning derived screening instrument to detect mild cognitive impairment and dementia, PLoS ONE 14 (3) (2019) e0213430.

[169]

S. Sharma, R.K. Dudeja, G.S. Aujla, R.S. Bali, N. Kumar, DeTrAs: deep learningbased healthcare framework for IoT-based assistance of Alzheimer patients, Neural Comput. Appl. ( 2020).

[170]

F. Sabry, T. Eltaras, W. Labda, K. Alzoubi, Q. Malluhi, Machine learning for healthcare wearable devices: the big picture, J. Healthcare Eng. 2022 ( 2022) 4653923.

[171]

M.S. Sirsat, E. Fermé, J. Câmara, Machine learning for brain stroke: a review, J. Stroke Cerebrovasc. Dis. 29 (10) (2020) 105162.

[172]

H.K. Bharadwaj, A. Agarwal, V. Chamola, N.R. Lakkaniga, V. Hassija, M. Guizani, B. Sikdar, A review on the role of machine learning in enabling IoT based healthcare applications, IEEE Access 9 (2021) 38859-38890.

[173]

Z. Ahmed, K. Mohamed, S. Zeeshan, X. Dong, Artificial Intelligence with MultiFunctional Machine Learning Platform Development for Better Healthcare and Precision Medicine, Database, Oxford, 2020.

[174]

K. Paranjape, M. Schinkel, P. Nanayakkara, Short keynote paper: mainstreaming personalized healthcare-transforming healthcare through new era of artificial intelligence, IEEE J. Biomed. Health Inform. 24 (7) (2020) 1860-1863.

[175]

K.B. Johnson, W.-Q. Wei, D. Weeraratne, M.E. Frisse, K. Misulis, K. Rhee, J. Zhao, J.L. Snowdon, Precision medicine, AI, and the future of personalized health care, Clin. Transl. Sci. 14 (1) (2021) 86-93.

[176]

F. Delmastro, F.D. Martino, C. Dolciotti, Cognitive training and stress detection in MCI frail older people through wearable sensors and machine learning, IEEE Access 8 (2020) 65573-65590.

[177]

A.M. Chekroud, J. Bondar, J. Delgadillo, G. Doherty, A. Wasil, M. Fokkema, Z. Cohen, D. Belgrave, R. DeRubeis, R. Iniesta, D. Dwyer, K. Choi, The promise of machine learning in predicting treatment outcomes in psychiatry, World Psychiatry 20 (2) (2021) 154-170.

[178]

H.S. Haeberle, J.M. Helm, S.M. Navarro, J.M. Karnuta, J.L. Schaffer, J.J. Callaghan, M.A. Mont, A.F. Kamath, V.E. Krebs, P.N. Ramkumar, Artificial intelligence and machine learning in lower extremity arthroplasty: a review, J. Arthroplast. 34 (10) (2019) 2201-2203.

[179]

E.E. Lee, J. Torous, M. De Choudhury, C.A. Depp, S.A. Graham, H.-C. Kim, M.P. Paulus, J.H. Krystal, D.V. Jeste, Artificial intelligence for mental health care: clinical applications, barriers, facilitators, and artificial wisdom, Biol. Psychiatry Cogn. Neurosci. Neuroimaging 6 (9) (2021) 856-864.

[180]

J.A. Naslund, P.P. Gonsalves, O. Gruebner, S.R. Pendse, S.L. Smith, A. Sharma, G. Raviola, Digital innovations for global mental health: opportunities for data science, task sharing, and early intervention, Curr. Treat. Options Psychiatry 6 (4) (2019) 337-351.

[181]

C. Kavitha, V. Mani, S.R. Srividhya, O.I. Khalaf, C.A. Tavera Romero, Early-stage Alzheimer’s disease prediction using machine learning models, Front. Public Health 10 (2022) 853294.

[182]

M. Grassi, N. Rouleaux, D. Caldirola, D. Loewenstein, K. Schruers, G. Perna, M. Dumontier, Alzheimer’s disease neuroimaging initiative, a novel ensemble-based machine learning algorithm to predict the conversion from mild cognitive impairment to Alzheimer’s disease using socio-demographic characteristics, clinical information, and neuropsychological measures, Front. Neurol. 10 (2019) 756.

[183]

M.B. Alazzam, F. Alassery, A. Almulihi, A novel smart healthcare monitoring system using machine learning and the Internet of things, Wirel. Commun. Mob. Comput. 2021 ( 2021) 1-7.

[184]

S.U. Amin, M.S. Hossain, Edge intelligence and Internet of things in healthcare: a survey, IEEE Access 9 (2021) 45-59.

[185]

M. Alhussein, G. Muhammad, M.S. Hossain, EEG pathology detection based on deep learning, IEEE Access 7 (2019) 27781-27788.

[186]

M. Jacob Rodrigues, O. Postolache, F. Cercas, Physiological and behavior monitoring systems for smart healthcare environments: a review, Sensors (Basel) 20 (8) (2020) 2186.

[187]

A. Kumar, K. Sharma, A. Sharma, Hierarchical deep neural network for mental stress state detection using IoT based biomarkers, Pattern Recognit. Lett. 145 (2021) 81-87.

[188]

R. Dwivedi, D. Mehrotra, S. Chandra, Potential of Internet of medical things (IoMT) applications in building a smart healthcare system: a systematic review, J. Oral Biol. Craniofac. Res. 12 (2) (2022) 302-318.

[189]

A. Bohr, K. Memarzadeh, The rise of artificial intelligence in healthcare applications, in: Artificial Intelligence in Healthcare, Elsevier, 2020, pp. 25-60.

[190]

L. Halvorsrud, T. Holthe, D. Karterud, E. Thorstensen, A. Lund, Perspectives on assistive technology among older Norwegian adults receiving community health services, Disabil. Rehabil. Assist. Technol. 18 (5) (2023) 685-692.

[191]

K. Yousaf, Z. Mehmood, I.A. Awan, T. Saba, R. Alharbey, T. Qadah, M.A. Alrige, A comprehensive study of mobile-health based assistive technology for the healthcare of dementia and Alzheimer’s disease (AD), Health Care Manage. Sci. 23 (2) (2020) 287-309.

[192]

S. Siddique, J.C.L. Chow, Machine learning in healthcare communication, Encyclopedia (Basel, 2021) 1 (1) (2021) 220-239.

[193]

N. Norori, Q. Hu, F.M. Aellen, F.D. Faraci, A. Tzovara, Addressing bias in big data and AI for health care: a call for open science, Patterns (N. Y.) 2 (10) (2021) 100347.

[194]

R.J. Chen, M.Y. Lu, T.Y. Chen, D.F.K. Williamson, F. Mahmood, Synthetic data in machine learning for medicine and healthcare, Nat. Biomed. Eng. 5 (6) (2021) 493-497.

[195]

S.-H. Park, T. Park, H.D. Park, D.-H. Jung, J.Y. Kim, Development of wireless sensor node and controller complying with communication interface standard for smart farming, J. Biosyst. Eng. 44 (1) (2019) 41-45.

[196]

I. Scott, S. Carter, E. Coiera, Clinician checklist for assessing suitability of machine learning applications in healthcare, BMJ Health Care Inform. 28 (1) (2021) e100251.

[197]

J.F. Hair Jr., M. Sarstedt, Data, measurement, and causal inferences in machine learning: opportunities and challenges for marketing, J. Mark. Theory Pract. 29 (1) (2021) 65-77.

[198]

X. Li, L. Zhang, Z. Wu, Z. Liu, L. Zhao, Y. Yuan, J. Liu, G. Li, D. Zhu, P. Yan, et al., Artificial general intelligence for medical imaging, arXiv preprint, arXiv: 2306.05480.

[199]

A.M.Y. Tai, A. Albuquerque, N.E. Carmona, M. Subramanieapillai, D.S. Cha, M. Sheko, Y. Lee, R. Mansur, R.S. McIntyre, Machine learning and big data: implications for disease modeling and therapeutic discovery in psychiatry, Artif. Intell. Med. 99 (101704) (2019) 101704.

[200]

T. Alsuliman, D. Humaidan, L. Sliman, Machine learning and artificial intelligence in the service of medicine: necessity or potentiality?, Curr. Res. Transl. Med. 68 (4) (2020) 245-251.

[201]

R. ElShawi, Y. Sherif, M. Al-Mallah, S. Sakr, Interpretability in healthcare: a comparative study of local machine learning interpretability techniques, Comput. Intell. 37 (4) (2021) 1633-1650.

[202]

S. Ellahham, N. Ellahham, M.C.E. Simsekler, Application of artificial intelligence in the health care safety context: opportunities and challenges, Am. J. Med. Qual. 35 (4) (2020) 341-348.

[203]

A. Vellido, The importance of interpretability and visualization in machine learning for applications in medicine and health care, Neural Comput. Appl. 32 (24) (2020) 18069-18083.

[204]

R. Liu, A.A. Ramli, H. Zhang, E. Henricson, X. Liu, An overview of human activity recognition using wearable sensors: healthcare and artificial intelligence,in: Internet of Things --ICIOT 2021, in: Lecture Notes in Computer Science, Springer International Publishing, Cham, 2022, pp. 1-14.

[205]

D. Saraswat, P. Bhattacharya, A. Verma, V.K. Prasad, S. Tanwar, G. Sharma, P.N. Bokoro, R. Sharma,Explainable AI for healthcare 5.0: opportunities and challenges, IEEE Access 10 (2022) 84486-84517.

[206]

E.M. Cahan, T. Hernandez-Boussard, S. Thadaney-Israni, D.L. Rubin, Putting the data before the algorithm in big data addressing personalized healthcare, npj Digit. Med. 2 (1) (2019) 78.

[207]

V. Berisha, C. Krantsevich, P.R. Hahn, S. Hahn, G. Dasarathy, P. Turaga, J. Liss, Digital medicine and the curse of dimensionality, npj Digit. Med. 4 (1) (2021) 153.

[208]

I.Y. Chen, E. Pierson, S. Rose, S. Joshi, K. Ferryman, M. Ghassemi, Ethical machine learning in healthcare, Annu. Rev. Biomed. Data Sci. 4 (1) (2021) 123-144.

[209]

M. Ashok, R. Madan, A. Joha, U. Sivarajah, Ethical framework for artificial intelligence and digital technologies, Int. J. Inf. Manag. 62 (102433) (2022) 102433.

[210]

D.S. Char, M.D. Abràmoff, C. Feudtner, Identifying ethical considerations for machine learning healthcare applications, Am. J. Bioeth. 20 (11) (2020) 7-17.

[211]

J. Guan, Artificial intelligence in healthcare and medicine: promises, ethical challenges and governance, Chin. Med. Sci. J. 34 (2) (2019) 76-83.

[212]

T. Wangmo, M. Lipps, R.W. Kressig, M. Ienca, Ethical concerns with the use of intelligent assistive technology: findings from a qualitative study with professional stakeholders, BMC Med. Ethics 20 (1) (2019) 98.

[213]

K.H. Keskinbora, Medical ethics considerations on artificial intelligence, J. Clin. Neurosci. 64 (2019) 277-282.

[214]

S.D. Lustgarten, Y.L. Garrison, M.T. Sinnard, A.W. Flynn, Digital privacy in mental healthcare: current issues and recommendations for technology use, Curr. Opin. Psychol. 36 (2020) 25-31.

[215]

M.S. Hossain, G. Muhammad, An audio-visual emotion recognition system using deep learning fusion for a cognitive wireless framework, IEEE Wirel. Commun. 26 (3) (2019) 62-68.

[216]

M. Shahbaz, S. Ali, A. Guergachi, A. Niazi, A. Umer,Classification of Alzheimer’s disease using machine learning techniques, in:Proceedings of the 8th International Conference on Data Science, Technology and Applications, SCITEPRESS - Science and Technology Publications, 2019.

[217]

J. Bajwa, U. Munir, A. Nori, B. Williams, Artificial intelligence in healthcare: transforming the practice of medicine, Future Healthc. J. 8 (2) (2021) e188--e194.

[218]

C.C. Yang, Explainable artificial intelligence for predictive modeling in healthcare, J. Healthc. Inform. Res. 6 (2) (2022) 228-239.

[219]

D.P. Tobón, M.S. Hossain, G. Muhammad, J. Bilbao, A.E. Saddik, Deep learning in multimedia healthcare applications: a review, Multimed. Syst. 28 (4) (2022) 1465-1479.

[220]

A. Javeed, A.L. Dallora, J.S. Berglund, A. Ali, L. Ali, P. Anderberg, Machine learning for dementia prediction: a systematic review and future research directions, J. Med. Syst. 47 (1) (2023) 17.

[221]

G. Muhammad, F. Alshehri, F. Karray, A.E. Saddik, M. Alsulaiman, T.H. Falk, A comprehensive survey on multimodal medical signals fusion for smart healthcare systems, Inf. Fusion 76 ( 2021) 355-375.

[222]

S.U. Amin, M.S. Hossain, G. Muhammad, M. Alhussein, M.A. Rahman, Cognitive smart healthcare for pathology detection and monitoring, IEEE Access 7 (2019) 10745-10753.

[223]

X. Chen, H. Xie, Z. Li, G. Cheng, M. Leng, F.L. Wang, Information fusion and artificial intelligence for smart healthcare: a bibliometric study, Inf. Process. Manag. 60 (1) (2023) 103113.

[224]

C.-H. Cheng, K.-L. Wong, J.-W. Chin, T.-T. Chan, R.H.Y. So, Deep learning methods for remote heart rate measurement: a review and future research agenda, Sensors (Basel) 21 (18) (2021) 6296.

[225]

A. Mehmood, S. Yang, Z. Feng, M. Wang, A.S. Ahmad, R. Khan, M. Maqsood, M. Yaqub, A transfer learning approach for early diagnosis of Alzheimer’s disease on MRI images, Neuroscience 460 (2021) 43-52.

[226]

S.O. Danso, Z. Zeng, G. Muniz-Terrera, C.W. Ritchie, Developing an explainable machine learning-based personalised dementia risk prediction model: a transfer learning approach with ensemble learning algorithms, Front. Big Data 4 (2021) 613047.

[227]

J. Bae, J. Stocks, A. Heywood, Y. Jung, L. Jenkins, V. Hill, A. Katsaggelos, K. Popuri, H. Rosen, M.F. Beg, L. Wang, Alzheimer’s disease neuroimaging initiative, transfer learning for predicting conversion from mild cognitive impairment to dementia of Alzheimer’s type based on a three-dimensional convolutional neural network, Neurobiol. Aging 99 (2021) 53-64.

[228]

D. Agarwal, G. Marques, I. de la Torre-Díez, M.A. Franco Martin, B. García Zapiraín, F. Martín Rodríguez, Transfer learning for Alzheimer’s disease through neuroimaging biomarkers: a systematic review, Sensors (Basel) 21 (21) (2021) 7259.

[229]

L. He, H. Li, J. Wang, M. Chen, E. Gozdas, J.R. Dillman, N.A. Parikh, A multi-task, multi-stage deep transfer learning model for early prediction of neurodevelopment in very preterm infants, Sci. Rep. 10 (1) (2020) 15072.

[230]

Z. Wan, R. Yang, M. Huang, N. Zeng, X. Liu, A review on transfer learning in EEG signal analysis, Neurocomputing 421 (2021) 1-14.

[231]

X. Gu, Z. Cao, A. Jolfaei, P. Xu, D. Wu, T.-P. Jung, C.-T. Lin, EEG-based braincomputer interfaces (BCIs): a survey of recent studies on signal sensing technologies and computational intelligence approaches and their applications, IEEE/ACM Trans. Comput. Biol. Bioinform. 18 (5) (2021) 1645-1666.

[232]

A. Raza, K.P. Tran, L. Koehl, S. Li, Designing ECG monitoring healthcare system with federated transfer learning and explainable AI, Knowl.-Based Syst. 236 (107763) (2022) 107763.

[233]

P. Gohel, P. Singh, M. Mohanty, Explainable ai: current status and future directions, arXiv preprint, arXiv:2107.07045.

[234]

W. Saeed, C. Omlin, Explainable AI (XAI): a systematic meta-survey of current challenges and future opportunities, Knowl.-Based Syst. 263 (110273) (2023) 110273.

[235]

E. Khodabandehloo, D. Riboni, A. Alimohammadi, HealthXAI: collaborative and explainable AI for supporting early diagnosis of cognitive decline, Future Gener. Comput. Syst. 116 (2021) 168-189.

[236]

F. Di Martino, F. Delmastro, Explainable AI for clinical and remote health applications: a survey on tabular and time series data, Artif. Intell. Rev. 56 (6) (2023) 5261-5315.

[237]

S. Gaube, H. Suresh, M. Raue, E. Lermer, T.K. Koch, M.F.C. Hudecek, A.D. Ackery, S.C. Grover, J.F. Coughlin, D. Frey, F.C. Kitamura, M. Ghassemi, E. Colak, Nontask expert physicians benefit from correct explainable AI advice when reviewing X-rays, Sci. Rep. 13 (1) (2023) 1383.

[238]

M. Boukhechba, A.N. Baglione, L.E. Barnes, Leveraging mobile sensing and machine learning for personalized mental health care, Ergon. Des. 28 (4) (2020) 18-23.

[239]

S. Kumar, I. Oh, S. Schindler, A.M. Lai, P.R.O. Payne, A. Gupta, Machine learning for modeling the progression of Alzheimer disease dementia using clinical data: a systematic literature review, JAMIA Open 4 (3) (2021) ooab052.

[240]

M. Ianculescu, E.-A. Paraschiv, A. Alexandru, Addressing mild cognitive impairment and boosting wellness for the elderly through personalized remote monitoring, Healthcare (Basel) 10 (7) (2022) 1214.

[241]

M. Basta, N. John Simos, M. Zioga, I. Zaganas, S. Panagiotakis, C. Lionis, A.N. Vgontzas, Personalized screening and risk profiles for mild cognitive impairment via a machine learning framework: implications for general practice, Int. J. Med. Inform. 170 (104966) (2023) 104966.

[242]

P. Khera, N. Kumar, Role of machine learning in gait analysis: a review, J. Med. Eng. Technol. 44 (8) (2020) 441-467.

[243]

F. Thabtah, S. Ong, D. Peebles, Detection of dementia progression from functional activities data using machine learning techniques, Intell. Decis. Technol. 16 (3) (2022) 615-630.

[244]

V.S. Naresh, M. Thamarai, V.V.L.D. Allavarpu, Privacy-preserving deep learning in medical informatics: applications, challenges, and solutions, Artif. Intell. Rev. 56 (S1) (2023) 1199-1241.

[245]

R. Nowrozy, K. Ahmed, H. Wang, T. Mcintosh, Towards a universal privacy model for electronic health record systems: an ontology and machine learning approach, in: Informatics, vol. 10, MDPI, 2023, p. 60.

[246]

A. Thieme, D. Belgrave, G. Doherty, Machine learning in mental health, ACM Trans. Comput.-Hum. Interact. 27 (5) (2020) 1-53.

[247]

J. Yin, K.Y. Ngiam, H.H. Teo, Role of artificial intelligence applications in real-life clinical practice: systematic review, J. Med. Internet Res. 23 (4) (2021) e25759.

[248]

F. Cabitza, J.-D. Zeitoun, The proof of the pudding: in praise of a culture of realworld validation for medical artificial intelligence, Ann. Transl. Med. 7 (8) (2019) 161.

AI Summary AI Mindmap
PDF

3033

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/