Covert wireless communication over uplink satellite-terrestrial network

Shulei Zeng , Bin Cao , Mugen Peng , Shuo Wang , Chen Sun

›› 2025, Vol. 11 ›› Issue (5) : 1318 -1329.

PDF
›› 2025, Vol. 11 ›› Issue (5) :1318 -1329. DOI: 10.1016/j.dcan.2025.03.009
Regular Papers
research-article

Covert wireless communication over uplink satellite-terrestrial network

Author information +
History +
PDF

Abstract

The emerging deployment of large-scale Low Earth Orbit (LEO) satellite constellations provides seamless global coverage. However, the increasing number of satellites also introduces significant security challenges, such as eavesdropping and illegal communication behavior detection. This paper investigates covert wireless communication over uplink satellite-terrestrial network, focusing on scenarios with warden satellites. By accounting for shot noise generated by ambient signals from terrestrial interferers, the terrestrial transmitter Alice can effectively hide its signal from warden satellites. Leveraging stochastic geometry, the distributions of distances between transmitter and satellites are analyzed, enabling the assessment of uplink performance and interference within a satellite’s coverage area. Approximate expressions for detection error probability and transmission outage probability are derived. Based on the theoretical analysis, an optimal scheme is proposed to maximize covert throughput under the constraint of the average detection error probability of the most detrimental warden satellite. Extensive Monte Carlo simulations experiments are conducted to validate the accuracy of analytical methods for evaluating covert performance.

Keywords

Satellite communication systems / Covert communication / Stochastic geometry / Physical layer security / Uplink

Cite this article

Download citation ▾
Shulei Zeng, Bin Cao, Mugen Peng, Shuo Wang, Chen Sun. Covert wireless communication over uplink satellite-terrestrial network. , 2025, 11(5): 1318-1329 DOI:10.1016/j.dcan.2025.03.009

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Sun, M. Peng, S. Zhang, G. Lin, P. Zhang, Integrated satellite-terrestrial networks: architectures, key techniques, and experimental progress, IEEE Netw. 36 (6) (2022) 191-198.

[2]

N. Pachler, I. del Portillo, E.F. Crawley, B.G. Cameron, An updated comparison of four low Earth orbit satellite constellation systems to provide global broadband, in: 2021 IEEE International Conference on Communications Workshops (ICC Work- shops), IEEE, 2021, pp. 1-7.

[3]

Z. Yin, N. Cheng, T.H. Luan, Y. Hui, W. Wang, Green interference based symbiotic security in integrated satellite-terrestrial communications, IEEE Trans. Wirel. Com- mun. 21 (11) (2022) 9962-9973.

[4]

D.-H. Jung, J.-G. Ryu, J. Choi, When satellites work as eavesdroppers, IEEE Trans. Inf. Forensics Secur. 17 (2022) 2784-2799.

[5]

P. Yue, J. An, J. Zhang, J. Ye, G. Pan, S. Wang, P. Xiao, L. Hanzo, Low Earth orbit satellite security and reliability: issues, solutions, and the road ahead, IEEE Commun. Surv. Tutor. 25 (3) (2023) 1604-1652.

[6]

Z. Wang, B. Cao, C. Liu, C. Xu, L. Zhang, Blockchain-based fog radio access networks: architecture, key technologies, and challenges, Digit. Commun. Netw. 8 (5) (2022) 720-726.

[7]

S. Zeng, B. Cao, Y. Sun, C. Sun, Z. Wan, M. Peng, Blockchain-assisted cross-domain data sharing in industrial iot, IEEE Internet Things J. (2023) 1.

[8]

Z. Chen, L. Zhu, P. Jiang, C. Zhang, F. Gao, J. He, D. Xu, Y. Zhang, Blockchain meets covert communication: a survey, IEEE Commun. Surv. Tutor. 24 (4) (2022) 2163-2192.

[9]

B. Cao, Z. Wang, L. Zhang, D. Feng, M. Peng, L. Zhang, Z. Han, Blockchain systems, technologies, and applications: a methodology perspective, IEEE Commun. Surv. Tu- tor. 25 (1) (2023) 353-385.

[10]

S. Yan, X. Zhou, J. Hu, S.V. Hanly, Low probability of detection communication: opportunities and challenges, IEEE Wirel. Commun. 26 (5) (2019) 19-25.

[11]

B.A. Bash, D. Goeckel, D. Towsley, S. Guha, Hiding information in noise: fundamental limits of covert wireless communication, IEEE Commun. Mag. 53 (12) (2015) 26-31.

[12]

B.A. Bash, D. Goeckel, D. Towsley, Limits of reliable communication with low prob- ability of detection on awgn channels, IEEE J. Sel. Areas Commun. 31 (9) (2013) 1921-1930.

[13]

X. Chen, J. An, Z. Xiong, C. Xing, N. Zhao, F.R. Yu, A. Nallanathan, Covert com- munications: a comprehensive survey, IEEE Commun. Surv. Tutor. 25 (2) (2023) 1173-1198.

[14]

T.-X. Zheng, Z. Yang, C. Wang, Z. Li, J. Yuan, X. Guan, Wireless covert communi- cations aided by distributed cooperative jamming over slow fading channels, IEEE Trans. Wirel. Commun. 20 (11) (2021) 7026-7039.

[15]

I. Cox, J. Kilian, F. Leighton, T. Shamoon, Secure spread spectrum watermarking for multimedia, IEEE Trans. Image Process. 6 (12) (1997) 1673-1687.

[16]

L. Mei, X. Sha, N. Zhang, Covert communication based on waveform overlay with weighted fractional Fourier transform signals, in: 2010 IEEE International Confer- ence on Wireless Communications, Networking and Information Security, 2010, pp. 472-475.

[17]

P.H. Che, M. Bakshi, S. Jaggi,Reliable deniable communication: hiding messages in noise, in: 2013 IEEE International Symposium on Information Theory, 2013, pp. 2945-2949.

[18]

M.R. Bloch, Covert communication over noisy channels: a resolvability perspective, IEEE Trans. Inf. Theory 62 (5) (2016) 2334-2354.

[19]

A. Bendary, A. Abdelaziz, C.E. Koksal,Achieving positive covert capacity over mimo awgn channels, IEEE J. Sel. Areas Inf. Theory 2 (1) (2021) 149-162.

[20]

H. Zhang, Y. Zou, H. Yin, D. Yu, X. Cheng, CCM-FL: covert communication mech- anisms for federated learning in crowd sensing IoT, Digit. Commun. Netw. 10 (3) (2024) 597-608.

[21]

B. He, S. Yan, X. Zhou, V.K.N. Lau, On covert communication with noise uncertainty, IEEE Commun. Lett. 21 (4) (2017) 941-944.

[22]

K. Shahzad, X. Zhou, Covert wireless communications under quasi-static fading with channel uncertainty, IEEE Trans. Inf. Forensics Secur. 16 (2021) 1104-1116.

[23]

B. He, S. Yan, X. Zhou, H. Jafarkhani, Covert wireless communication with a Poisson field of interferers, IEEE Trans. Wirel. Commun. 17 (9) (2018) 6005-6017.

[24]

T.V. Sobers, B.A. Bash, S. Guha, D. Towsley, D. Goeckel, Covert communication in the presence of an uninformed jammer, IEEE Trans. Wirel. Commun. 16 (9) (2017) 6193-6206.

[25]

R. Soltani, D. Goeckel, D. Towsley, B.A. Bash, S. Guha, Covert wireless communi- cation with artificial noise generation, IEEE Trans. Wirel. Commun. 17 (11) (2018) 7252-7267.

[26]

J. Hu, S. Yan, X. Zhou, F. Shu, J. Li, J. Wang, Covert communication achieved by a greedy relay in wireless networks, IEEE Trans. Wirel. Commun. 17 (7) (2018) 4766-4779.

[27]

Z. Han, Y. Zhou, Y. Zhang, T.-X. Zheng, L. Liu, J. Shi, Joint jammer selection and power optimization in covert communications against a warden with uncertain lo- cations, Digit. Commun. Netw. 11 (4) (2025) 1114-1124.

[28]

S. Ma, Y. Zhang, H. Sheng, H. Li, J. Shi, L. Yang, Y. Wu, N. Al-Dhahir, S. Li, Opti- mal probabilistic constellation shaping for covert communications, IEEE Trans. Inf. Forensics Secur. 17 (2022) 3165-3178.

[29]

Y. Sun, M. Peng, S. Zhang, G. Lin, P. Zhang, Integrated satellite-terrestrial networks: architectures, key techniques, and experimental progress, IEEE Netw. 36 (6) (2022) 191-198.

[30]

B.A. Homssi, A. Al-Hourani, Modeling uplink coverage performance in hybrid satellite-terrestrial networks, IEEE Commun. Lett. 25 (10) (2021) 3239-3243.

[31]

Y. He, Z. Li, Z. Dou, Chinese satellite frequency and orbit entity relation extraction method based on dynamic integrated learning, Digit. Commun. Netw. 11 (3) (2025) 787-794.

[32]

A. Abdi, W. Lau, M.-S. Alouini, M. Kaveh, A new simple model for land mobile satel- lite channels: first- and second-order statistics, IEEE Trans. Wirel. Commun. 2 (3) (2003) 519-528.

[33]

J. Park, J. Choi, N. Lee, A tractable approach to coverage analysis in downlink satel- lite networks, IEEE Trans. Wirel. Commun. 22 (2) (2023) 793-807.

[34]

N. Okati, T. Riihonen, D. Korpi, I. Angervuori, R. Wichman, Downlink coverage and rate analysis of low Earth orbit satellite constellations using stochastic geometry, IEEE Trans. Commun. 68 (8) (2020) 5120-5134.

[35]

R. Wang, M.A. Kishk, M.-S. Alouini, Stochastic geometry-based low latency routing in massive Leo satellite networks, IEEE Trans. Aerosp. Electron. Syst. 58 (5) (2022) 3881-3894.

[36]

A. Al-Hourani, An analytic approach for modeling the coverage performance of dense satellite networks, IEEE Wirel. Commun. Lett. 10 (4) (2021) 897-901.

[37]

S. Zhang, X. Li, K.L. Yeung, Segment routing for traffic engineering and effective recovery in low-Earth orbit satellite constellations, Digit. Commun. Netw. 10 (3) (2024) 706-715.

[38]

M. Haenggi, Stochastic Geometry for Wireless Networks, Cambridge University Press, 2012.

[39]

D. Vere-Jones, D.J. Daley, An Introduction to the Theory of Point Processes: Volume II:General Theory and Structure, Springer Science & Business Media, 2007.

[40]

D. Kim, J. Lee, T.Q.S. Quek, Multi-layer unmanned aerial vehicle networks: modeling and performance analysis, IEEE Trans. Wirel. Commun. 19 (1) (2020) 325-339.

[41]

X. Zhang, M. Peng, C. Liu, Impacts of antenna downtilt and backhaul connectivity on the uav-enabled heterogeneous networks, IEEE Trans. Wirel. Commun. 22 (6) (2023) 4057-4073.

[42]

B. Li, Z. Fei, X. Xu, Z. Chu, Resource allocations for secure cognitive satellite- terrestrial networks, IEEE Wirel. Commun. Lett. 7 (1) (2018) 78-81.

[43]

Z. Wu, R. Liu, H. Shuai, S. Zhu, C. Li, Covert performance for integrated satellite mul- tiple terrestrial relay networks with partial relay selection, Sensors 22 (15) (2022) 5524.

[44]

D. Song, Z. Yang, G. Pan, S. Wang, J. An, Ris-assisted covert transmission in satellite-terrestrial communication systems, IEEE Internet Things J. 10 (22) (2023) 19415-19426.

[45]

S. Feng, X. Lu, S. Sun, E. Hossain, G. Wei, Z. Ni, Covert communication in large-scale multi-tier Leo satellite networks, IEEE Trans. Mob. Comput. (2024) 1-12.

[46]

L. Zhang, Z. Chen, C. Jiang, L. Yin,Covert communication in ultra-dense Leo satellite systems with interference uncertainty, in: ICC 2024 - IEEE International Conference on Communications, 2024, pp. 1255-1260.

[47]

P. Liu, J. Si, Z. Li, N. Al-Dhahirl, Covert communications for cognitive satellite terres- trial networks, in: 2024 IEEE Wireless Communications and Networking Conference (WCNC), 2024, pp. 1-6.

[48]

ITU,Propagation data required for the design of Earth-space land mobile telecom- munication systems, Document itu-r p. 681-6, p series, Tech. Rep., 2019.

[49]

Y.V. Goncharenko, W. Berg, S.C. Reising, F. Iturbide-Sanchez, V. Chandrasekar, Design and analysis of cubesat microwave radiometer constellations to observe tem- poral variability of the atmosphere, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14 (2021) 11728-11736.

[50]

J. Zhu, Y. Sun, M. Peng, Timing advance estimation in low Earth orbit satellite net- works, IEEE Trans. Veh. Technol. (2023) 1-16.

[51]

R.W. Heath, M. Kountouris, T. Bai, Modeling heterogeneous network interference us- ing Poisson point processes, IEEE Trans. Signal Process. 61 (16) (2013) 4114-4126.

[52]

3GPP,Solutions for nr to support non-terrestrial networks (NTN): TR 38.821, Release 16, https://www.3gpp.org/ftp/Specs/archive/38_series/38.821, 2021.

AI Summary AI Mindmap
PDF

460

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/