CARS: Connection as required scheme for horizontal communications in Industry 4.0

Jianhua Li , Bohao Feng , Aleteng Tian , Hui Zheng , Klaus Moessner , Hong-ning Dai , Jiong Jin

›› 2025, Vol. 11 ›› Issue (5) : 1519 -1529.

PDF
›› 2025, Vol. 11 ›› Issue (5) :1519 -1529. DOI: 10.1016/j.dcan.2025.03.003
Regular Papers
research-article

CARS: Connection as required scheme for horizontal communications in Industry 4.0

Author information +
History +
PDF

Abstract

In the rapidly evolving landscape of Industry 4.0 (I4.0), the convergence of information and operational technologies necessitates real-time communication and collaboration across cyber-physical systems and the Internet of Things (IoT). Rapid data transmission is particularly critical within enterprises (vertically) and among stakeholders (horizontally) in this complex, heterogeneous ecosystem. While current research has focused on data application, processing, and storage within the cloud-edge-device continuum, cross-edge transmission has received less attention, resulting in challenges such as suboptimal routing and excessive delays in horizontal communications. To address the above issues, this paper introduces a Connection-As-Required Scheme (CARS) specifically designed for delay-sensitive IoT and Cyber-Physical System (CPS) applications, where low-latency communication is essential for operational efficiency. CARS leverages Lyapunov optimization and backpressure algorithms to optimize traffic scheduling and routing, minimizing communication delay between entities. Benchmarking against state-of-the-art solutions, CARS reduces Round-Trip Time (RTT) to approximately 47.0% of conventional methods and decreases delay by 24.5% in TCP-based and 26.0% in UDP-based applications. These results highlight the potential of CARS to facilitate effective, low-latency collaboration in diverse I4.0 environments.

Keywords

Edge/fog computing / Route optimization / Traffic scheduling / End-to-end delay / On-demand horizontal communication

Cite this article

Download citation ▾
Jianhua Li, Bohao Feng, Aleteng Tian, Hui Zheng, Klaus Moessner, Hong-ning Dai, Jiong Jin. CARS: Connection as required scheme for horizontal communications in Industry 4.0. , 2025, 11(5): 1519-1529 DOI:10.1016/j.dcan.2025.03.003

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Facts Factors,Industry 4.0 market size, https://www.globenewswire.com/news-release/2021/09/22/2301460/0/en/Industry-4-0-Market-Size-Share-Statistics-Value-Will-Grow-to-USD-210-Billion-by-2026-Global-Estimation-by-Facts-Factors.html, 2021. (Accessed 20 February 2025).

[2]

I.S. Khan, M.O. Ahmad, J. Majava,Industry 4.0 innovations and their implications: an evaluation from sustainable development perspective, J. Clean. Prod. 405 (2023) 137006.

[3]

H. Kagermann, J. Helbig, A. Hellinger, W. Wahlster,Recommendations for imple- menting the strategic initiative Industry 4.0: Securing the future of German manufac- turing industry; final report of the Industrie 4.0 Working Group, Forschungsunion, 2013.

[4]

B. Feng, A. Tian, S. Yu, J. Li, H. Zhou, H. Zhang, Efficient cache consistency man- agement for transient IoT data in content-centric networking, IEEE Internet Things J. 9 (15) (2022) 12931-12944.

[5]

C.O. Klingenberg, M.A.V. Borges, J.A.V. Antunes Jr,Industry 4.0 as a data-driven paradigm: a systematic literature review on technologies, Int. J. Manuf. Technol. Manag. 32 (3) (2019) 570-592.

[6]

J. Li, X. Liu, J. Jin, S. Yu, Too expensive to attack: enlarge the attack expense through joint defense at the edge, in: 2021 IEEE 20th International Conference on Trust, Secu- rity and Privacy in Computing and Communications (TrustCom), 2021, pp. 524-531.

[7]

K. Bochie, M.S. Gilbert, L. Gantert, M.S. Barbosa, D.S. Medeiros, M.E.M. Campista, A survey on deep learning for challenged networks: applications and trends, J. Netw. Comput. Appl. 194 (2021) 103213.

[8]

N. Krishnamoorthy, S. Umarani,Implementation and management of cloud security for Industry 4.o - data using hybrid elliptical curve cryptography, J. High Technol. Manag. Res. 34 (2) (2023) 100474.

[9]

J. Li, L. Lyu, X. Liu, X. Zhang, X. Lyu, Fleam: a federated learning empowered ar- chitecture to mitigate DDoS in industrial IoT, IEEE Trans. Ind. Inform. 18 (6) (2022) 4059-4068.

[10]

Y. Zhang, B. Feng, A. Tian, S. Yu, H. Zhang, Task offloading control and customized workload scheduling in multi-layer cloud networks, IEEE Trans. Netw. Serv. Manag. 21 (1) (2024) 714-728.

[11]

A.G. Tasiopoulos, O. Ascigil, I. Psaras, S. Toumpis, G. Pavlou, Fogspot: spot pric- ing for application provisioning in edge/fog computing, IEEE Trans. Serv. Comput. 14 (6) (2021) 1781-1795.

[12]

A. Tian, B. Feng, H. Zhou, Y. Huang, K. Sood, S. Yu, H. Zhang, Efficient federated DRL-based cooperative caching for mobile edge networks, IEEE Trans. Netw. Serv. Manag. 20 (1) (2023) 246-260.

[13]

H. Gauttam, K. Pattanaik, S. Bhadauria, D. Saxena, Sapna, A cost aware topology for- mation scheme for latency sensitive applications in edge infrastructure-as-a-service paradigm, J. Netw. Comput. Appl. 199 (2022) 103303.

[14]

X. Deng, J. Yin, P. Guan, N.N. Xiong, L. Zhang, S. Mumtaz, Intelligent delay-aware partial computing task offloading for multiuser industrial Internet of things through edge computing, IEEE Internet Things J. 10 (4) (2023) 2954-2966.

[15]

M. Golec, S.S. Gill, H. Wu, T.C. Can, M. Golec, O. Cetinkaya, F. Cuadrado, A.K. Par- likad, S. Uhlig, Master: machine learning-based cold start latency prediction frame- work in serverless edge computing environments for Industry 4.0, IEEE J. Selected Areas Sens. 1 (2024) 36-48.

[16]

Y. Huang, B. Feng, A. Tian, P. Dong, S. Yu, H. Zhang, An efficient differentiated rout- ing scheme for MEO/LEO-based multi-layer satellite networks, IEEE Trans. Netw. Sci. Eng. 11 (1) (2024) 1026-1041.

[17]

V. Balasubramanian, M. Aloqaily, M. Reisslein, An SDN architecture for time sensi- tive industrial IoT, Comput. Netw. 186 (2021) 107739.

[18]

B. Feng, Y. Huang, A. Tian, H. Wang, H. Zhou, S. Yu, H. Zhang, DR-SDSN: an elastic differentiated routing framework for software-defined satellite networks, IEEE Wirel. Commun. 29 (6) (2022) 80-86.

[19]

J. Okwuibe, J. Haavisto, I. Kovacevic, E. Harjula, I. Ahmad, J. Islam, M. Ylianttila, SDN-enabled resource orchestration for industrial IoT in collaborative edge-cloud networks, IEEE Access 9 (2021) 115839-115854.

[20]

L.S. Dalenogare, G.B. Benitez, N.F. Ayala, A.G. Frank,The expected contribution of Industry 4.0 technologies for industrial performance, Int. J. Prod. Econ. 204 (2018) 383-394.

[21]

T. Lins, R. Augusto Rabelo Oliveira, L.H.A. Correia, J. Sa Silva,Industry 4.0 retrofitting, in:2018 VIII Brazilian Symposium on Computing Systems Engineering (SBESC), 2018, pp. 8-15.

[22]

G. Aceto, V. Persico, A. Pescapé,A survey on information and communication tech- nologies for Industry 4.0: state-of-the-art, taxonomies, perspectives, and challenges, IEEE Commun. Surv. Tutor. 21 (4) (2019) 3467-3501.

[23]

J. Li, J. Jin, D. Yuan, H. Zhang, Virtual fog: a virtualization enabled fog computing framework for Internet of things, IEEE Internet Things J. 5 (1) (2018) 121-131.

[24]

H. Zhang, B. Feng, A. Tian, A systematic review for smart identifier networking, Sci. China Inf. Sci. 65 (12) (2022) 221301.

[25]

N. Mazumdar, A. Nag, J.P. Singh, Trust-based load-offloading protocol to reduce service delays in fog-computing-empowered IoT, Comput. Electr. Eng. 93 (2021) 107223.

[26]

J. Li, T. Zhang, J. Jin, Y. Yang, D. Yuan, L. Gao,Latency estimation for fog-based Internet of things, in:2017 27th International Telecommunication Networks and Applications Conference (ITNAC), 2017, pp. 1-6.

[27]

J. Li, J. Jin, L. Lyu, D. Yuan, Y. Yang, L. Gao, C. Shen, A fast and scalable authen- tication scheme in IoT for smart living, Future Gener. Comput. Syst. 117 (2021) 125-137.

[28]

M. Qaraqe, A. Elzein, E. Basaran, Y. Yang, E.B. Varghese, W. Costandi, J. Rizk, N. Alam, Publicvision: a secure smart surveillance system for crowd behavior recogni- tion, IEEE Access 12 (2024) 26474-26491.

[29]

M. Ashjaei, L.L. Bello, M. Daneshtalab, G. Patti, S. Saponara, S. Mubeen, Time- sensitive networking in automotive embedded systems: state of the art and research opportunities, J. Syst. Archit. 117 (2021) 102137.

[30]

M. Mohamadi, B. Djamaa, M.R. Senouci, A. Mellouk,Fan: fast and active network formation in IEEE 802.15.4 TSCH networks, J. Netw. Comput. Appl. 183-184 (2021) 103026.

[31]

B. Feng, H. Zhou, G. Li, Y. Zhang, K. Sood, S. Yu, Enabling machine learning with service function chaining for security enhancement at 5G edges, IEEE Netw. 35 (5) (2021) 196-201.

[32]

M.S. Yousefpoor, E. Yousefpoor, H. Barati, A. Barati, A. Movaghar, M. Hosseinzadeh, Secure data aggregation methods and countermeasures against various attacks in wireless sensor networks: a comprehensive review, J. Netw. Comput. Appl. 190 (2021) 103118.

[33]

V.M. Tabim, N.F. Ayala, A.G. Frank, Implementing vertical integration in the Indus- try 4.0 journey: which factors influence the process of information systems adop- tion?, Inf. Syst. Front. (2021) 1-18.

[34]

M.C. Lucas-Estañ, J. Gozalvez, Sensing-based grant-free scheduling for ultra reliable low latency and deterministic beyond 5G networks, IEEE Trans. Veh. Technol. 71 (4) (2022) 4171-4183.

[35]

B. Yi, X. Wang, M. Huang, Content delivery enhancement in vehicular social network with better routing and caching mechanism, J. Netw. Comput. Appl. 177 (2021) 102952.

[36]

M. Karuppiah, T. Ramana, R. Mohanty, G.G. Devarajan, S.M. Nagarajan, Uiotn-pmse: ubiquitous IoT network-based predictive modeling in smart environment, Int. J. Commun. Syst. (2023) e5661.

[37]

N.R. Sivakumar, S.M. Nagarajan, G.G. Devarajan, L. Pullagura, R.P. Mahapatra, En- hancing network lifespan in wireless sensor networks using deep learning based graph neural network, Phys. Commun. 59 (2023) 102076.

[38]

L. Krishnasamy, R.K. Dhanaraj, D. Ganesh Gopal, T. Reddy Gadekallu, M.K. Aboudaif, E. Abouel Nasr, A heuristic angular clustering framework for secured sta- tistical data aggregation in sensor networks, Sensors 20 (17) (2020) 4937.

[39]

G.G. Deverajan, V. Muthukumaran, C.-H. Hsu, M. Karuppiah, Y.-C. Chung, Y.-H. Chen, Public key encryption with equality test for industrial Internet of things system in cloud computing, Trans. Emerg. Telecommun. Technol. 33 (4) (2022) e4202.

[40]

S. Sennan, R. Somula, A.K. Luhach, G.G. Deverajan, W. Alnumay, N. Jhanjhi, U. Ghosh, P. Sharma,Energy efficient optimal parent selection based routing protocol for Internet of things using firefly optimization algorithm, Trans. Emerg. Telecom- mun. Technol. 32 (8) (2021) e4171.

[41]

S. Palanisamy, S. Sankar, R. Somula, G.G. Deverajan, Communication trust and energy-aware routing protocol for WSN using DS theory, Int. J. Grid High Perform. Comput. 13 (4) (2021) 24-36.

AI Summary AI Mindmap
PDF

210

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/