Enhancing generalized receive spatial modulation by symbol-level precoding: Design guidelines with or without intelligent reflecting surfaces

Lei Zhang , Miaowen Wen , Qiang Li , Guangyuan Zheng , Lixia Xiao

›› 2025, Vol. 11 ›› Issue (4) : 1262 -1270.

PDF
›› 2025, Vol. 11 ›› Issue (4) :1262 -1270. DOI: 10.1016/j.dcan.2025.01.003
Research article
research-article

Enhancing generalized receive spatial modulation by symbol-level precoding: Design guidelines with or without intelligent reflecting surfaces

Author information +
History +
PDF

Abstract

Existing Generalized Receive Spatial Modulation (GRSM) with Symbol-Level Precoding (SLP) forces the received signals (excluding noise) at unintended antennas to be zero, which restricts the generation of strong constructive interference to intended receive antennas and thus limits the performance improvement over conventional GRSM with Zero-Forcing (ZF) precoding. In this paper, we propose a novel GRSM-SLP scheme that relaxes the zero receive power constraint and achieves superior performance by integrating Intelligent Reflecting Surfaces (IRSs). Specifically, our advanced GRSM-RSLP jointly exploits SLP at the transmitter and passive beamforming at the IRS to maximize the power difference between intended and unintended receive antennas, where the received signals at unintended antennas are relaxed to lie in a sphere centered at origin with a preset radius that depends on the Signal-to-Noise Ratio (SNR) value. The precoding matrix and passive beamforming vectors are optimized alternately by considering both phase shift keying and quadrature amplitude modulation signaling. It is worth emphasizing that GRSM-RSLP is a universal solution, also applicable to systems without IRS, although it performs better in IRS-assisted systems. We finally conduct extensive simulations to prove the superiority of GRSM-RSLP over GRSM-ZF and GRSM-SLP. Simulation results show that the performance of GRSM-RSLP is significantly influenced by the number of unintended antennas, and the larger the number, the better its performance. In the best-case scenario, GRSM-RSLP can achieve SNR gains of up to 10.5 dB and 12.5 dB over GRSM-SLP and GRSM-ZF, respectively.

Keywords

Receive spatial modulation / Constructive interference / Symbol-level precoding / Intelligent reflecting surface

Cite this article

Download citation ▾
Lei Zhang, Miaowen Wen, Qiang Li, Guangyuan Zheng, Lixia Xiao. Enhancing generalized receive spatial modulation by symbol-level precoding: Design guidelines with or without intelligent reflecting surfaces. , 2025, 11(4): 1262-1270 DOI:10.1016/j.dcan.2025.01.003

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Wu, B. Yin, G. Wang, C. Dick, J.R. Cavallaro, C. Studer, Large-scale MIMO detec-tion for 3GPP LTE: algorithms and FPGA implementations, IEEE J. Sel. Top. Signal Process. 8 (5) (2014) 916-929.

[2]

L. Zheng, D.N.C. Tse, Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels, IEEE Trans. Inf. Theory 49 (5) (2003) 1073-1096.

[3]

C. Du, J. Yu, R. Zhang, J. Ren, J. An, Orthcatter: high-throughput in-band OFDM backscatter with over-the-air code division,in:21st USENIX Symposium on Net-worked Systems Design and Implementation (NSDI 24), 2024, pp. 1301-1314.

[4]

R.Y. Mesleh, H. Haas, S. Sinanovic, C.W. Ahn, S. Yun, Spatial modulation, IEEE Trans. Veh. Technol. 57 (4) (2008) 2228-2241.

[5]

M. Di Renzo, H. Haas, A. Ghrayeb, S. Sugiura, L. Hanzo, Spatial modulation for gen-eralized MIMO: challenges, opportunities, and implementation, Proc. IEEE 102 (1) (2014) 56-103.

[6]

M. Wen, B. Zheng, K.J. Kim, M. Di Renzo, T.A. Tsiftsis, K.-C. Chen, N. Al-Dhahir, A survey on spatial modulation in emerging wireless systems: research progresses and applications, IEEE J. Sel. Areas Commun. 37 (9) (2019) 1949-1972.

[7]

Y. Wu, L. Xiao, Y. Xie, G. Liu, T. Jiang, Efficient signal detector design for otfs with index modulation, Digit.commun. Netw. (2024).

[8]

Z. Niu, W. Ma, W. Wang, T. Jiang, Spatial modulation-based ambient backscatter: bringing energy self-sustainability to massive Internet of everything in 6G, China Commun. 17 (12) (2020) 52-65.

[9]

J. Jeganathan, A. Ghrayeb, L. Szczecinski, A. Ceron, Space shift keying modulation for mimo channels, IEEE Trans. Wirel.commun. 8 (7) (2009) 3692-3703, https://doi.org/10.1109/TWC.2009.080910.

[10]

J. Wang, S. Jia, J. Song, Generalised spatial modulation system with multiple active transmit antennas and low complexity detection scheme, IEEE Trans. Wirel.com-mun. 11 (4) (2012) 1605-1615.

[11]

R. Mesleh, S.S. Ikki, H.M. Aggoune, Quadrature spatial modulation, IEEE Trans. Veh. Technol. 64 (6) (2015) 2738-2742.

[12]

L.-L. Yang, Transmitter preprocessing aided spatial modulation for multiple-input multiple-output systems, in: Proc. IEEE Veh. Technol. Conf., Spring, Yokohama, 2011, pp. 1-5.

[13]

R. Zhang, L.-L. Yang, L. Hanzo, Generalised pre-coding aided spatial modulation, IEEE Trans. Wirel.commun. 12 (11) (2013) 5434-5443.

[14]

E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M.-S. Alouini, R. Zhang, Wireless communications through reconfigurable intelligent surfaces, IEEE Access 7 (2019) 116753-116773.

[15]

M.D. Renzo, M. Debbah, D.-T. Phan-Huy, A. Zappone, M.-S. Alouini, C. Yuen, V. Sciancalepore, G.C. Alexandropoulos, J. Hoydis, H. Gacanin, et al., Smart radio en-vironments empowered by reconfigurable AI meta-surfaces: an idea whose time has come, EURASIP J. Wirel.commun. Netw. 2019 (1) (2019) 1-20.

[16]

H. Gacanin, M. Di Renzo,Wireless 2.0: toward an intelligent radio environment empowered by reconfigurable meta-surfaces and artificial intelligence, IEEE Veh. Technol. Mag. 15 (4) (2020) 74-82.

[17]

Q. Wu, R. Zhang, Towards smart and reconfigurable environment: intelligent reflect-ing surface aided wireless network, IEEE Commun. Mag. 58 (1) (2020) 106-112.

[18]

J. Liu, J. Yu, X. Chen, R. Zhang, S. Wang, J. An, Covert communication in ambient backscatter systems with uncontrollable RF source, IEEE Trans. Commun. 70 (3) (2022) 1971-1983.

[19]

Q. Li, M. Wen, M. Di Renzo, Single-rf mimo: from spatial modulation to metasurface-based modulation, IEEE Wirel. Commun. 28 (4) (2021) 88-95.

[20]

Q. Li, M. Wen, S. Wang, G.C. Alexandropoulos, Y.-C. Wu, Space shift keying with reconfigurable intelligent surfaces: phase configuration designs and performance analysis, IEEE Open J. Commun. Soc. 2 (2021) 322-333.

[21]

S. Luo, P. Yang, Y. Che, K. Yang, K. Wu, K.C. Teh, S. Li, Spatial modulation for ris-assisted uplink communication: joint power allocation and passive beamforming design, IEEE Trans. Commun. 69 (10) (2021) 7017-7031.

[22]

E. Basar, Reconfigurable intelligent surface-based index modulation: a new beyond mimo paradigm for 6G, IEEE Trans. Commun. 68 (5) (2020) 3187-3196.

[23]

J. Yuan, M. Wen, Q. Li, E. Basar, G.C. Alexandropoulos, G. Chen, Receive quadrature reflecting modulation for ris-empowered wireless communications, IEEE Trans. Veh. Technol. 70 (5) (2021) 5121-5125.

[24]

M.H. Dinan, M.D. Renzo, M.F. Flanagan, Ris-assisted receive quadrature spatial mod-ulation with low-complexity greedy detection, IEEE Trans. Commun. 71 (11) (2023) 6546-6560.

[25]

M.H. Dinan, N.S. Perović, M.F. Flanagan, Ris-assisted receive quadrature space-shift keying: a new paradigm and performance analysis, IEEE Trans. Commun. 70 (10) (2022) 6874-6889.

[26]

T. Ma, Y. Xiao, X. Lei, P. Yang, X. Lei, O.A. Dobre, Large intelligent surface assisted wireless communications with spatial modulation and antenna selection, IEEE J. Sel. Areas Commun. 38 (11) (2020) 2562-2574.

[27]

A. Basu, S.P. Dash, A. Kaushik, D. Ghose, M.D. Renzo, Y.C. Eldar, Performance analy-sis of ris-aided index modulation with greedy detection over Rician fading channels, IEEE Trans. Wirel.commun. (2024) 8465-8479.

[28]

C. Liu, F. Yu, Z. Shi, M. Lin, C. Pang, F. Wang, J. Zhang, Ris-assisted precoding spatial modulation: optimal design and performance analysis, IEEE Access 12 (2024) 4399-4412.

[29]

Q. Li, X. Lin, C. Zhang, J. Li, Novel ris-aided receive spatial modulation via joint ac-tive and passive beamforming, IEEE Wirel. Commun. Lett. 13 (4) (2024) 1058-1062.

[30]

C. Masouros, T. Ratnarajah, M. Sellathurai, C.B. Papadias, A.K. Shukla, Known inter-ference in the cellular downlink: a performance limiting factor or a source of green signal power?, IEEE Commun. Mag. 51 (10) (2013) 162-171.

[31]

Z. Wei, F. Liu, C. Masouros, H.V. Poor, Fundamentals of physical layer anonymous communications: sender detection and anonymous precoding, IEEE Trans. Wirel.commun. 21 (1) (2021) 64-79.

[32]

C. Masouros, G. Zheng, Exploiting known interference as green signal power for downlink beamforming optimization, IEEE Trans. Signal Process. 63 (14) (2015) 3628-3640.

[33]

M. Alodeh, S. Chatzinotas, B. Ottersten, Constructive multiuser interference in sym-bol level precoding for the MISO downlink channel, IEEE Trans. Signal Process. 63 (9) (2015) 2239-2252.

[34]

C.-E. Chen, Constructive interference-based symbol-level precoding for generalized precoding-aided spatial modulation with PSK signaling, IEEE Commun. Lett. 24 (8) (2020) 1816-1820.

[35]

J. Yu, L. Chen, R. Zhang, K. Wang, Finding needles in a haystack: missing tag detec-tion in large RFID systems, IEEE Trans. Commun. 65 (5) (2017) 2036-2047.

[36]

J. Yu, W. Gong, J. Liu, L. Chen, K. Wang, On efficient tree-based tag search in large-scale RFID systems, IEEE/ACM Trans. Netw. 27 (1) (2019) 42-55.

[37]

R. Liu, H. Li, M. Li, Q. Liu, Secure symbol-level precoding design for QAM signals in MU-MISO wiretap systems, in: Proc. IEEE International Conf. Commun, ICC, Dublin, 2020, pp. 1-6.

[38]

A. Li, L. Song, B. Vucetic, Y. Li, Interference exploitation precoding for reconfigurable intelligent surface aided multi-user communications with direct links, IEEE Wirel. Commun. Lett. 9 (11) (2020) 1937-1941.

AI Summary AI Mindmap
PDF

280

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/