Cross-chain mapping blockchain: Scalable data management in massive IoT networks

Wenjian Hu , Yao Yu , Xin Hao , Phee Lep Yeoh , Lei Guo , Yonghui Li

›› 2025, Vol. 11 ›› Issue (4) : 1125 -1140.

PDF
›› 2025, Vol. 11 ›› Issue (4) :1125 -1140. DOI: 10.1016/j.dcan.2024.11.001
Research article
research-article

Cross-chain mapping blockchain: Scalable data management in massive IoT networks

Author information +
History +
PDF

Abstract

We propose a Cross-Chain Mapping Blockchain (CCMB) for scalable data management in massive Internet of Things (IoT) networks. Specifically, CCMB aims to improve the scalability of securely storing, tracing, and transmitting IoT behavior and reputation data based on our proposed cross-mapped Behavior Chain (BChain) and Reputation Chain (RChain). To improve off-chain IoT data storage scalability, we show that our lightweight CCMB architecture efficiently utilizes available fog-cloud resources. The scalability of on-chain IoT data tracing is enhanced using our Mapping Smart Contract (MSC) and cross-chain mapping design to perform rapid Reputation-to-Behavior (R2B) traceability queries between BChain and RChain blocks. To maximize off-chain to on-chain throughput, we optimize the CCMB block settings and producers based on a general Poisson Point Process (PPP) network model. The constrained optimization problem is formulated as a Markov Decision Process (MDP), and solved using a dual-network Deep Reinforcement Learning (DRL) algorithm. Simulation results validate CCMB’s scalability advantages in storage, traceability, and throughput. In specific massive IoT scenarios, CCMB can reduce the storage footprint by 50% and traceability query time by 90%, while improving system throughput by 55% compared to existing benchmarks.

Keywords

Blockchain / Cross-chain mappings / Data management / Internet of things / Deep reinforcement learning

Cite this article

Download citation ▾
Wenjian Hu, Yao Yu, Xin Hao, Phee Lep Yeoh, Lei Guo, Yonghui Li. Cross-chain mapping blockchain: Scalable data management in massive IoT networks. , 2025, 11(4): 1125-1140 DOI:10.1016/j.dcan.2024.11.001

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

I. Ullah, D. Adhikari, X. Su, F. Palmieri, C. Wu, C. Choi, Integration of data science with the intelligent IoT (IIoT): Current challenges and future perspectives, Digit.commun. Netw. 11 (2) (2025) 280-298.

[2]

Y. Li, Y. Yu, R. Chen, X. Du, M. Guizani, Integritychain: provable data possession for decentralized storage, IEEE J. Sel. Areas Commun. 38 (6) (2020) 1205-1217.

[3]

R. Song, B. Xiao, Y. Song, S. Guo, Y. Yang, A survey of blockchain-based schemes for data sharing and exchange, IEEE Trans. Big Data 9 (6) (2023) 1477-1495.

[4]

M. Zhaofeng, W. Lingyun, W. Xiaochang, W. Zhen, Z. Weizhe, Blockchain-enabled decentralized trust management and secure usage control of iot big data, IEEE Int. Things J. 7 (5) (2019) 4000-4015.

[5]

Y. Zhu, H. Li, M. Li, Y. Yu, Adaptor signature based on randomized eddsa in blockchain, Digit.commun. Netw. 11 (3) (2025) 689-699.

[6]

W. Hu, Y. Yu, Y. Zong, X. Hao, P.L. Yeoh, B. Vucetic, Y. Li, Cost-effective multi-type data scheduling for blockchain in massive Internet of uavs, IEEE Int. Things J. 11 (12) (2024) 21092-21102.

[7]

L. Tao, Y. Lu, X. Ding, Y. Fan, J.Y. Kim, Throughput-oriented associated transaction assignment in sharding blockchains for iot social data storage, Digit.commun. Netw. 8 (6) (2022) 885-899.

[8]

T.R. Gadekallu, Q.-V. Pham, D.C. Nguyen, P.K.R. Maddikunta, N. Deepa, B. Prabadevi, P.N. Pathirana, J. Zhao, W.-J. Hwang, Blockchain for edge of things: ap-plications, opportunities, and challenges, IEEE Int. Things J. 9 (2) (2021) 964-988.

[9]

J.W. Heo, G.S. Ramachandran, A. Dorri, R. Jurdak, Blockchain storage optimisation with multi-level distributed caching, IEEE Trans. Netw. Serv. Manag. 19 (4) (2022) 3724-3736.

[10]

G. Wang, M. Nixon, Intertrust: towards an efficient blockchain interoperability archi-tecture with trusted services, in: 2021 IEEE International Conference on Blockchain (Blockchain), IEEE, 2021, pp. 150-159.

[11]

Z. Wang, B. Cao, C. Liu, C. Xu, L. Zhang, Blockchain-based fog radio access networks: architecture, key technologies, and challenges, Digit.commun. Netw. 8 (5) (2022) 720-726.

[12]

P. Zheng, Q. Xu, Z. Zheng, Z. Zhou, Y. Yan, H. Zhang, Meepo: multiple execution environments per organization in sharded consortium blockchain, IEEE J. Sel. Areas Commun. 40 (12) (2022) 3562-3574.

[13]

W. Liu, B. Cao, M. Peng, B. Li, Distributed and parallel blockchain: towards a multi-chain system with enhanced security, IEEE Trans. Dependable Secure Comput. 22 (1) (2025) 723-739.

[14]

X. Mao, C. Li, Y. Zhang, G. Zhang, J. Li, M. Shah, C. Xing, Huabasechain: an extensible blockchain with high performance, IEEE Int. Things J. 10 (14) (2023) 12462-12485.

[15]

M.S. Ali, M. Vecchio, M. Pincheira, K. Dolui, F. Antonelli, M.H. Rehmani, Applica-tions of blockchains in the Internet of things: a comprehensive survey, IEEE Com-mun. Surv. Tutor. 21 (2) (2018) 1676-1717.

[16]

H. Wu, S. Jiang, J. Cao, High-efficiency blockchain-based supply chain traceability, IEEE Trans. Intell. Transp. Syst. 24 (4) (2023) 3748-3758.

[17]

X. Hao, P.L. Yeoh, Z. Ji, Y. Yu, B. Vucetic, Y. Li, Stochastic analysis of double blockchain architecture in iot communication networks, IEEE Int. Things J. 9 (12) (2022) 9700-9711.

[18]

C. Huang, Z. Wang, H. Chen, Q. Hu, Q. Zhang, W. Wang, X. Guan, Repchain: a reputation-based secure, fast, and high incentive blockchain system via sharding, IEEE Int. Things J. 8 (6) (2020) 4291-4304.

[19]

Y. Yu, S. Liu, L. Guo, P.L. Yeoh, B. Vucetic, Y. Li, Crowdr-fbc: a distributed fog-blockchains for mobile crowdsourcing reputation management, IEEE Int. Things J. 7 (9) (2020) 8722-8735.

[20]

Q. Zhang, Y. He, R. Lai, Z. Hou, G. Zhao, A survey on the efficiency, reliability, and security of data query in blockchain systems, Future Gener. Comput. Syst. 145 (2023) 303-320.

[21]

S. Jiang, J. Cao, J.A. McCann, Y. Yang, Y. Liu, X. Wang, Y. Deng, Privacy-preserving and efficient multi-keyword search over encrypted data on blockchain, in: 2019 IEEE International Conference on Blockchain (Blockchain), IEEE, 2019, pp. 405-410.

[22]

H. Yuan, S. Fei, Z. Yan, Technologies of blockchain interoperability: a survey, Digit.commun. Netw. 11 (1) (2025) 210-224.

[23]

K. Lei, M. Du, J. Huang, T. Jin, Groupchain: towards a scalable public blockchain in fog computing of iot services computing, IEEE Trans. Serv.comput. 13 (2) (2020) 252-262.

[24]

S. Nakamoto,Bitcoin: a peer-to-peer electronic cash system, https://bitcoin.org/bitcoin.pdf, 2008. (Accessed 19 June 2024).

[25]

G. Wood, et al., Ethereum: A Secure Decentralised Generalised Transaction Ledger, Ethereum Project Yellow Paper, vol. 151(2014), 2014, pp. 1-32.

[26]

S. Hu, J. Lin, X. Du, W. Huang, Z. Lu, Q. Duan, J. Wu, ACSarf: a DRL-based adaptive consortium blockchain sharding framework for supply chain finance, Digit.com-mun. Netw. 11 (1) (2025) 26-34.

[27]

M. Liu, F.R. Yu, Y. Teng, V.C. Leung, M. Song, Performance optimization for blockchain-enabled industrial Internet of things (iiot) systems: a deep reinforcement learning approach, IEEE Trans. Ind. Inform. 15 (6) (2019) 3559-3570.

[28]

F. Guo, F.R. Yu, H. Zhang, H. Ji, M. Liu, V.C. Leung, Adaptive resource allocation in future wireless networks with blockchain and mobile edge computing, IEEE Trans. Wirel.commun. 19 (3) (2019) 1689-1703.

[29]

Y. Sun, L. Zhang, G. Feng, B. Yang, B. Cao, M.A. Imran, Blockchain-enabled wireless Internet of things: performance analysis and optimal communication node deploy-ment, IEEE Int. Things J. 6 (3) (2019) 5791-5802.

[30]

D.S. Gadiraju, V. Lalitha, V. Aggarwal, An optimization framework based on deep reinforcement learning approaches for prism blockchain, IEEE Trans. Serv.comput. 16 (4) (2023) 2451-2461.

[31]

X. Wei, Y. Yan, S. Guo, X. Qiu, F. Qi, Secure data sharing: blockchain-enabled data access control framework for iot, IEEE Int. Things J. 9 (11) (2021) 8143-8153.

[32]

H. Xie, J. Zheng, T. He, S. Wei, C. Hu, Tebds: a trusted execution environment-and-blockchain-supported iot data sharing system, Future Gener. Comput. Syst. 140 (2023) 321-330.

[33]

T. Wu, G. Jourjon, K. Thilakarathna, P.L. Yeoh, Mapchain-d: a distributed blockchain for iiot data storage and communications, IEEE Trans. Ind. Inform. 19 (9) (2023) 9766-9776.

[34]

H.-T. Wu, Y. Zheng, B. Zhao, J. Hu, An anonymous reputation management system for mobile crowdsensing based on dual blockchain, IEEE Int. Things J. 9 (9) (2021) 6956-6968.

[35]

Z. Hong, S. Guo, P. Li, Scaling blockchain via layered sharding, IEEE J. Sel. Areas Commun. 40 (12) (2022) 3575-3588.

[36]

J. Xi, G. Xu, S. Zou, Y. Lu, G. Li, J. Xu, R. Wang, A blockchain dynamic shard-ing scheme based on hidden Markov model in collaborative iot, IEEE Int. Things J. 10 (16) (2023) 14896-14907.

[37]

Y. Fan, T. Qiu, L. Zhang, T. Xu, W. Liu, X. Zhou, Z. Wan, Dlbn: group storage mech-anism based on double-layer blockchain network, IEEE Int. Things J. 9 (20) (2022) 19649-19659.

[38]

K. Ren, N.-M. Ho, D. Loghin, T.-T. Nguyen, B.C. Ooi, Q.-T. Ta, F. Zhu, Interoperability in blockchain: a survey, IEEE Trans. Knowl. Data Eng. 35 (12) (2023) 12750-12769.

[39]

P. Gaži, A. Kiayias, D. Zindros, Proof-of-stake sidechains, in: 2019 IEEE Symposium on Security and Privacy (SP), IEEE, 2019, pp. 139-156.

[40]

B. Pillai, K. Biswas, Z. Hóu, V. Muthukkumarasamy, Burn-to-claim: an asset transfer protocol for blockchain interoperability, Comput. Netw. 200 (2021) 108495.

[41]

A. Xiong, G. Liu, Q. Zhu, A. Jing, S.W. Loke, A notary group-based cross-chain mech-anism, Digit.commun. Netw. 8 (6) (2022) 1059-1067.

[42]

Z. Wu, Y. Xiao, E. Zhou, Q. Pei, Q. Wang, A solution to data accessibility across heterogeneous blockchains, in: 2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS), IEEE, 2020, pp. 414-421.

[43]

K. Wang, Z. Zhang, H.S. Kim, Reviewchain: smart contract based review system with multi-blockchain gateway, in: 2018 IEEE International Conference on Internet of Things (IThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (Smart-Data), IEEE, 2018, pp. 1521-1526.

[44]

T. Xie, K. Gai, L. Zhu, Y. Guo, K.-K.R. Choo, Cross-chain-based trustworthy node identity governance in Internet of things, IEEE Int. Things J. 10 (24) (2023) 21580-21594.

[45]

M. Zamani, M. Movahedi, M. Raykova, Rapidchain: scaling blockchain via full shard-ing,in: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-munications Security, 2018, pp. 931-948.

[46]

H. Dang, T.T.A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, B.C. Ooi,Towards scaling blockchain systems via sharding, in:Proceedings of the 2019 International Confer-ence on Management of Data, 2019, pp. 123-140.

[47]

R.A. Memon, J.P. Li, M.I. Nazeer, A.N. Khan, J. Ahmed, Dualfog-iot: additional fog layer for solving blockchain integration problem in Internet of things, IEEE Access 7 (2019) 169073-169093.

[48]

Y. Yu, S. Liu, P.L. Yeoh, B. Vucetic, Y. Li, Layerchain: a hierarchical edge-cloud blockchain for large-scale low-delay industrial Internet of things applications, IEEE Trans. Ind. Inform. 17 (7) (2020) 5077-5086.

[49]

T. Xu, T. Qiu, D. Hu, C. Mu, Z. Wan, W. Liu, A scalable two-layer blockchain system for distributed multicloud storage in iiot, IEEE Trans. Ind. Inform. 18 (12) (2022) 9173-9183.

[50]

M. Haenggi, On distances in uniformly random networks, IEEE Trans. Inf. Theory 51 (10) (2005) 3584-3586.

[51]

J.G. Andrews, F. Baccelli, R.K. Ganti, A tractable approach to coverage and rate in cellular networks, IEEE Trans. Commun. 59 (11) (2011) 3122-3134.

[52]

Hyperledger, Hyperledger fabric docs, https://hyperledger-fabric.readthedocs.io, 2024. (Accessed 19 June 2024).

[53]

M. Haenggi, Stochastic Geometry for Wireless Networks, Cambridge University Press, Cambridge, U.K., 2012.

[54]

M. Castro, B. Liskov, et al., Practical byzantine fault tolerance,in:Proceedings of the Third Symposium on Operating Systems Design and Implementation, USENIX Association, 1999, pp. 173-186.

[55]

J. Feng, F.R. Yu, Q. Pei, J. Du, L. Zhu, Joint optimization of radio and computational resources allocation in blockchain-enabled mobile edge computing systems, IEEE Trans. Wirel.commun. 19 (6) (2020) 4321-4334.

[56]

A. Zhou, S. Li, X. Ma, S. Wang, Service-oriented resource allocation for blockchain-empowered mobile edge computing, IEEE J. Sel. Areas Commun. 40 (12) (2022) 3391-3404.

[57]

F.A. Cowell, Measuring Inequality, Oxford University Press, Oxford, U.K., 2011.

[58]

Y. Wang, J. Wang, W. Zhang, Y. Zhan, S. Guo, Q. Zheng, X. Wang, A survey on deploying mobile deep learning applications: a systemic and technical perspective, Digit.commun. Netw. 8 (1) (2022) 1-17.

[59]

Hyperledger, Fabric samples, https://github.com/hyperledger/fabric-samples, 2024. (Accessed 20 September 2024).

[60]

E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, et al., Hyperledger fabric: a dis-tributed operating system for permissioned blockchains,in: Proceedings of the Thir-teenth EuroSys Conference, 2018, pp. 1-15.

[61]

Hyperledger,Caliper benchmarks, https://github.com/hyperledger/caliper-benchmarks/tree/main/networks/fabric, 2024. (Accessed 6 September 2024).

[62]

A. Imteaj, A.R. Shahid, S. Zaman, Leveraging blockchain interoperability for inter-dependent networks, IEEE Consum. Electron. Mag. 13 (2) (2023) 81-86.

[63]

Y. Ucbas, A. Eleyan, M. Hammoudeh, M. Alohaly, Performance and scalability anal-ysis of Ethereum and hyperledger fabric, IEEE Access 11 (2023) 67156-67167.

[64]

Alchemy, Web 3 tutorials overview, https://docs.alchemy.com/docs/tutorials-overview, 2024. (Accessed 10 September 2024).

[65]

Overledger, Whitepaper, https://www.allcryptowhitepapers.com/wp-content/uploads/2018/11/Quant-White-paper.pdf, 2024. (Accessed 10 September 2024).

[66]

Blockdaemon,Blockdaemon api documentation, https://docs.blockdaemon.com/reference/homepage-api, 2024. (Accessed 10 September 2024).

[67]

M.A. Al Sibahee, Z.A. Abduljabbar, A. Ngueilbaye, C. Luo, J. Li, Y. Huang, J. Zhang, N. Khan, V.O. Nyangaresi, A.H. Ali, Blockchain-based authentication schemes in smart environments: a systematic literature review, IEEE Int. Things J. 11 (21) (2024) 34774-34796.

[68]

Y. Wang, Z. Wang, G. Yang, S. Ai, X. Xiang, C. Chen, M. Zhao, On-chain is not enough: ensuring pre-data on the chain credibility for blockchain-based source-tracing sys-tems, Digit.commun. Netw. 9 (5) (2023) 1053-1060.

PDF

238

Accesses

0

Citation

Detail

Sections
Recommended

/