Efficient modulation mode recognition based on joint communication parameter estimation in non-cooperative scenarios

Xiangdong Huang , Yimin Wang , Yanping Li , Xiaolei Wang

›› 2025, Vol. 11 ›› Issue (4) : 1080 -1090.

PDF
›› 2025, Vol. 11 ›› Issue (4) :1080 -1090. DOI: 10.1016/j.dcan.2024.10.016
Research article
research-article

Efficient modulation mode recognition based on joint communication parameter estimation in non-cooperative scenarios

Author information +
History +
PDF

Abstract

Due to the neglect of the retrieval of communication parameters (including the symbol rate, the symbol timing offset, and the carrier frequency), the existing non-cooperative communication mode recognizers suffer from the generality ability degradation and severe difficulty in distinguishing a large number of modulation modes, etc. To overcome these drawbacks, this paper proposes an efficient communication mode recognizer consisting of communication parameter estimation, the constellation diagram retrieval, and a classification network. In particular, we define a 2-D symbol synchronization metric to retrieve both the symbol rate and the symbol timing offset, whereas a constellation dispersity annealing procedure is devised to correct the carrier frequency accurately. Owing to the accurate estimation of these crucial parameters, high-regularity constellation maps can be retrieved and thus simplify the subsequent classification work. Numerical results show that the proposed communication mode recognizer acquires higher classification accuracy, stronger anti-noise robustness, and higher applicability of distinguishing multiple types, which presents the proposed scheme with vast applicable potentials in non-cooperative scenarios.

Keywords

Non-cooperative communication / Symbol rate / Symbol timing offset / Carrier frequency correction / Pre-demodulation

Cite this article

Download citation ▾
Xiangdong Huang, Yimin Wang, Yanping Li, Xiaolei Wang. Efficient modulation mode recognition based on joint communication parameter estimation in non-cooperative scenarios. , 2025, 11(4): 1080-1090 DOI:10.1016/j.dcan.2024.10.016

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

O.A. Dobre, A. Abdi, Y. Bar-Ness, W. Su, Survey of automatic modulation classifi-cation techniques: classical approaches and new trends, IET Commun. 1 (2) (2007) 137-156.

[2]

J. Grajal, O. Yeste-Ojeda, M.A. Sanchez, M. Garrido, M. López-Vallejo, Real time fpga implementation of an automatic modulation classifier for electronic warfare applications, in: 2011 19th European Signal Processing Conference, IEEE, 2011, pp. 1514-1518.

[3]

O.A. Dobre, A. Abdi, Y. Bar-Ness, W. Su,Blind modulation classification: a concept whose time has come, in: IEEE/Sarnoff Symposium on Advances in Wired and Wire-less Communication, 2005, IEEE, 2005, pp. 223-228.

[4]

Q. Tian, S. Zhang, S. Mao, Y. Lin, Adversarial attacks and defenses for digital com-munication signals identification, Digit.commun. Netw. 10 (3) (2024) 756-764.

[5]

D.H. Al-Nuaimi, I.A. Hashim, I.S. Zainal Abidin, L.B. Salman, N.A. Mat Isa, Perfor-mance of feature-based techniques for automatic digital modulation recognition and classification-a review, Electronics 8 (12) (2019) 1407.

[6]

Y. Wang, M. Liu, J. Yang, G. Gui, Data-driven deep learning for automatic modulation recognition in cognitive radios, IEEE Trans. Veh. Technol. 68 (4) (2019) 4074-4077.

[7]

C. Hou, G. Liu, Q. Tian, Z. Zhou, L. Hua, Y. Lin, Multisignal modulation classification using sliding window detection and complex convolutional network in frequency domain, IEEE Internet Things J. 9 (19) (2022) 19438-19449.

[8]

S. Peng, H. Jiang, H. Wang, H. Alwageed, Y. Zhou, M.M. Sebdani, Y.-D. Yao, Modu-lation classification based on signal constellation diagrams and deep learning, IEEE Trans. Neural Netw. Learn. Syst. 30 (3) (2018) 718-727.

[9]

F. Meng, P. Chen, L. Wu, X. Wang, Automatic modulation classification: a deep learn-ing enabled approach, IEEE Trans. Veh. Technol. 67 (11) (2018) 10760-10772.

[10]

A. Parmar, A. Chouhan, K. Captain, J. Patel, Deep multilevel architecture for auto-matic modulation classification, Phys.commun. 64 (2024) 102361.

[11]

J.B. Tamakuwala, New low complexity variance method for automatic modulation classification and comparison with maximum likelihood method, in: 2019 Interna-tional Conference on Range Technology (ICORT), IEEE, 2019, pp. 1-5.

[12]

F. Hameed, O.A. Dobre, D.C. Popescu, On the likelihood-based approach to modu-lation classification, IEEE Trans. Wirel.commun. 8 (12) (2009) 5884-5892.

[13]

J. Zheng, Y. Lv, Likelihood-based automatic modulation classification in ofdm with index modulation, IEEE Trans. Veh. Technol. 67 (9) (2018) 8192-8204.

[14]

J.L. Xu, W. Su, M. Zhou, Likelihood-ratio approaches to automatic modulation clas-sification, IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev. 41 (4) (2010) 455-469.

[15]

O.A. Dobre, Signal identification for emerging intelligent radios: classical problems and new challenges, IEEE Instrum. Meas. Mag. 18 (2) (2015) 11-18.

[16]

Y. Yuan, P. Zhao, B. Wang, B. Wu, Hybrid maximum likelihood modulation classifica-tion for continuous phase modulations, IEEE Commun. Lett. 20 (3) (2016) 450-453.

[17]

X. Yan, G. Liu, H.-C. Wu, G. Feng, New automatic modulation classifier using cyclic-spectrum graphs with optimal training features, IEEE Commun. Lett. 22 (6) (2018) 1204-1207.

[18]

O.A. Dobre, M. Oner, S. Rajan, R. Inkol, Cyclostationarity-based robust algorithms for qam signal identification, IEEE Commun. Lett. 16 (1) (2011) 12-15.

[19]

H. Zhang, L. Yu, G.-S. Xia, Iterative time-frequency filtering of sinusoidal signals with updated frequency estimation, IEEE Signal Process. Lett. 23 (1) (2015) 139-143.

[20]

V.D. Orlic, M.L. Dukic, Automatic modulation classification algorithm using higher-order cumulants under real-world channel conditions, IEEE Commun. Lett. 13 (12) (2009) 917-919.

[21]

L. Han, F. Gao, Z. Li, O.A. Dobre, Low complexity automatic modulation classifica-tion based on order-statistics, IEEE Trans. Wirel.commun. 16 (1) (2016) 400-411.

[22]

S. Kharbech, E.P. Simon, A. Belazi, W. Xiang, Denoising higher-order moments for blind digital modulation identification in multiple-antenna systems, IEEE Wirel. Commun. Lett. 9 (6) (2020) 765-769.

[23]

M.W. Aslam, Z. Zhu, A.K. Nandi, Automatic modulation classification using combi-nation of genetic programming and knn, IEEE Trans. Wirel.commun. 11 (8) (2012) 2742-2750.

[24]

A. Swami, B.M. Sadler, Hierarchical digital modulation classification using cumu-lants, IEEE Trans. Commun. 48 (3) (2000) 416-429.

[25]

B. Ramkumar, Automatic modulation classification for cognitive radios using cyclic feature detection, IEEE Circuits Syst. Mag. 9 (2) (2009) 27-45.

[26]

Y. Yangqiang, Z. Xueqing, A modified method for digital modulation recognition based on instantaneous signal features, in: 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE), IEEE, 2019, pp. 1351-1354.

[27]

J. Xu, X. Sun, L. Liu, Y. Li, Y. Wang, T. Zhang, Modulation recognition based on instantaneous feature fusion, in: 2023 3rd International Symposium on Computer Technology and Information Science (ISCTIS), IEEE, 2023, pp. 632-638.

[28]

L.-H. Qiao, X. Ren, Intrinsic image modulation characters extraction based on mono-genic and strcture tensor, in: 2014 International Conference on Wavelet Analysis and Pattern Recognition, IEEE, 2014, pp. 1-6.

[29]

R. Zhang, C. He, L. Jing, C. Zhou, C. Long, J. Li, A modulation recognition system for underwater acoustic communication signals based on higher-order cumulants and deep learning, J. Mar. Sci. Eng. 11 (8) (2023) 1632.

[30]

Y. Yang, L. Yang, M. Hu, A method for digital modulation recognition based on mixed signal features, in: 2019 International Conference on Electronic Engineering and Informatics (EEI), IEEE, 2019, pp. 195-199.

[31]

L. Shen, S. Li, C. Song, F. Chen, Automatic Modulation Classification of Mpsk Signals Using High Order Cumulants, 2006 8th International Conference on Signal Process-ing, vol. 1, IEEE, 2006.

[32]

W.A. Gardner, Signal interception: a unifying theoretical framework for feature de-tection, IEEE Trans. Commun. 36 (8) (1988) 897-906.

[33]

B.C. Lovell, R.C. Williamson, The statistical performance of some instantaneous fre-quency estimators, IEEE Trans. Signal Process. 40 (7) (1992) 1708-1723.

[34]

M.P. Fitz, Further results in the fast estimation of a single frequency, IEEE Trans. Commun. 42 (234) (1994) 862-864.

[35]

U. Mengali, M. Morelli, Data-aided frequency estimation for burst digital transmis-sion, IEEE Trans. Commun. 45 (1) (1997) 23-25.

[36]

C. Wang, Y. Li, K. Li,An high-precision fft frequency offset estimation algorithm based on interpolation and binary search, in: 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), IEEE, 2019, pp. 437-442.

[37]

Y. Liang, Y. Yao, T. Dai, M. Qin, A blind symbol rate estimation of weak signal based on cyclic spectrum and wavelet transform, J. Inf.comput. Sci. 10 (7) (2013) 1917-1924.

[38]

S. Majhi, T.S. Ho, Blind symbol-rate estimation and test bed implementation of lin-early modulated signals, IEEE Trans. Veh. Technol. 64 (3) (2014) 954-963.

[39]

C. Mosquera, S. Scalise, R. López-Valcarce, Non-data-aided symbol rate estimation of linearly modulated signals, IEEE Trans. Signal Process. 56 (2) (2008) 664-674.

[40]

R. Hatoum, A. Ghaith, G. Pujolle, Generalized wavelet-based symbol rate estimation for linear singlecarrier modulation in blind environment, Eur. Sci. J. 10 (15).

[41]

L. Wang, G. Zhang, D. Bian, Z. Xie, J. Hu, Blind symbol rate estimation of satellite communication signal by Haar wavelet transform, J. Electron. (China) 28 (2) (2011) 198-203.

[42]

M. Flohberger, W. Kogler, W. Gappmair, O. Koudelka, Symbol rate estimation with inverse Fourier transforms, in: 2006 International Workshop on Satellite and Space Communications, IEEE, 2006, pp. 110-113.

[43]

W. Gappmair, S. Cioni, G.E. Corazza, O. Koudelka, Extended Gardner detector for improved symbol-timing recovery of 𝑚-psk signals, IEEE Trans. Commun. 54 (11) (2006) 1923-1927.

[44]

F. Gini, G.B. Giannakis, Frequency offset and symbol timing recovery in flat-fading channels: a cyclostationary approach, IEEE Trans. Commun. 46 (3) (1998) 400-411.

[45]

B.B. Purkayastha, K.K. Sarma, A Digital Phase Locked Loop Based Signal and Symbol Recovery System for Wireless Channel, Springer, 2015.

[46]

G. Karam, I. Jeanclaude, H. Sari, A reduced-complexity frequency detector de-rived from the maximum-likelihood principle, IEEE Trans. Commun. 43 (10) (1995) 2641-2650.

[47]

X. Huang, Y. Han, Z. Yan, H. Xian, W. Lu, Resolution doubled co-prime spectral analyzers for removing spurious peaks, IEEE Trans. Signal Process. 64 (10) (2016) 2489-2498.

[48]

M. Rosenblatt, Stationary Sequences and Random Fields, Springer Science & Business Media, 2012.

[49]

R. Lackey, D.W. Upmal, Speakeasy: the military software radio, IEEE Commun. Mag. 33 (5) (1995) 56-61.

[50]

G.R. Rodrigez, R.C.S. Esdrugar, S.M.J. Alfredo, R.F. Alfredo, P. Alarcón, H. Segura, D. Arce, Qhispikay: military radio equipment defined by software in the uhf band for the Peruvian army, in: 2023 International Conference on Electrical, Communication and Computer Engineering (ICECCE), IEEE, 2023, pp. 1-4.

[51]

W. Yang, X. Yang, Research on symbol rate estimation based on the generalized square envelope spectrum, in: 2015 IEEE International Conference on Communica-tion Problem-Solving (ICCP), IEEE, 2015, pp. 391-394.

[52]

Z. He, Y. Peng, Y. Zhao, J. Yang, L. Wang, B. Zheng, G. Gui, Deep learning-based auto-matic modulation recognition algorithm in non-cooperative communication systems, in: 2019 11th International Conference on Wireless Communications and Signal Pro-cessing (WCSP), IEEE, 2019, pp. 1-6.

[53]

H. Fu-qing, Z. Zhi-ming, X. Yi-tao, R. Guo-chun, Modulation recognition of symbol shaped digital signals, in: 2008 International Conference on Communications, Cir-cuits and Systems, IEEE, 2008, pp. 328-332.

[54]

H. Zhao, Y. Zhou, B. Sun, L. Tian, J. Shi, Cyclic spectrum based intelligent modula-tion recognition with machine learning, in: 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP), IEEE, 2018, pp. 1-6.

[55]

A. Hussain, M. Sohail, S. Alam, S.A. Ghauri, I.M. Qureshi, Classification of m-qam and m-psk signals using genetic programming (gp), Neural Comput. Appl. 31 (2019) 6141-6149.

AI Summary AI Mindmap
PDF

198

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/