Resource allocation algorithm for downlink secure transmission in wireless EH cooperative networks with idle relay-assisted jamming

Xintong Zhou , Kun Xiao , Feng Ke

›› 2025, Vol. 11 ›› Issue (3) : 829 -836.

PDF
›› 2025, Vol. 11 ›› Issue (3) : 829 -836. DOI: 10.1016/j.dcan.2024.07.006
Original article

Resource allocation algorithm for downlink secure transmission in wireless EH cooperative networks with idle relay-assisted jamming

Author information +
History +
PDF

Abstract

In wireless Energy Harvesting (EH) cooperative networks, we investigate the problem of secure energy-saving resource allocation for downlink physical layer security transmission. Initially, we establish a model for a multi-relay cooperative network incorporating wireless energy harvesting, spectrum sharing, and system power constraints, focusing on physical layer security transmission in the presence of eavesdropping nodes. In this model, the source node transmits signals while injecting Artificial Noise (AN) to mitigate eavesdropping risks, and an idle relay can act as a jamming node to assist in this process. Based on this model, we formulate an optimization problem for maximizing system secure harvesting energy efficiency, this problem integrates constraints on total power, bandwidth, and AN allocation. We proceed by conducting a mathematical analysis of the optimization problem, deriving optimal solutions for secure energy-saving resource allocation, this includes strategies for power allocation at the source and relay nodes, bandwidth allocation among relays, and power splitting for the energy harvesting node. Thus, we propose a secure resource allocation algorithm designed to maximize secure harvesting energy efficiency. Finally, we validate the correctness of the theoretical derivation through Monte Carlo simulations, discussing the impact of parameters such as legitimate channel gain, power splitting factor, and the number of relays on secure harvesting energy efficiency of the system. The simulation results show that the proposed secure energy-saving resource allocation algorithm effectively enhances the security performance of the system.

Keywords

Wireless cooperative network / Physical layer security / Energy harvesting / Resource allocation / Spectrum sharing / Secure energy efficiency

Cite this article

Download citation ▾
Xintong Zhou, Kun Xiao, Feng Ke. Resource allocation algorithm for downlink secure transmission in wireless EH cooperative networks with idle relay-assisted jamming. , 2025, 11(3): 829-836 DOI:10.1016/j.dcan.2024.07.006

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Xintong Zhou: Writing - review & editing, Writing - original draft, Methodology, Investigation. Kun Xiao: Writing - review & editing, Supervision, Data curation. Feng Ke: Supervision, Resources, Project administration.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) [grant numbers 62171188]; the Guangdong Provincial Key Laboratory of Human Digital Twin [Grant 2022B1212010004].

References

[1]

J. He, J. Liu, Y. Shen, X. Jiang, N. Shiratori, Link selection for security-QoS trade-offs in buffer-aided relaying networks, IEEE Trans. Inf. Forensics Secur. 15 (2020) 1347-1362.

[2]

M.S.J. Solaija, H. Salman, H. Arslan,Towards a unified framework for physical layer security in 5G and beyond networks, IEEE Open J. Veh. Technol. 3 (2022) 321-343.

[3]

X. Lu, N. Cong Luong, D.T. Hoang, D. Niyato, Y. Xiao, P. Wang, Secure wirelessly powered networks at the physical layer: challenges, countermeasures, and road ahead, Proc. IEEE 110 (1) (2022) 193-209.

[4]

H. Ren, X. Liu, C. Pan, Z. Peng, J. Wang, Performance analysis for RIS-aided secure massive MIMO systems with statistical CSI, IEEE Wirel. Commun. Lett. 12 (1) (2023) 124-128.

[5]

Z. Tang, T. Hou, Y. Liu, J. Zhang, C. Zhong, A novel design of RIS for enhancing the physical layer security for RIS-aided NOMA networks, IEEE Wirel. Commun. Lett. 10 (11) (2021) 2398-2401.

[6]

N. Su, E. Panayirci, M. Koca, A. Yesilkaya, H.V. Poor, H. Haas, Physical layer security for multi-user MIMO visible light communication systems with generalized space shift keying, IEEE Trans. Commun. 69 (4) (2021) 2585-2598.

[7]

A.K. Yerrapragada, T. Eisman, B. Kelley,Physical layer security for beyond 5G: ultra secure low latency communications, IEEE Open J. Commun. Soc. 2 (2021) 2232-2242.

[8]

E. Illi, et al., Physical layer security for authentication, confidentiality, and malicious node detection: a paradigm shift in securing IoT networks, IEEE Commun. Surv. Tutor. 26 (1) (2024) 347-388.

[9]

Z. Cao, et al., Security-reliability trade-off analysis of AN-aided relay selection for full-duplex relay networks, IEEE Trans. Veh. Technol. 70 (3) (2021) 2362-2377.

[10]

M. Nawaz, W.U. Khan, Z. Ali, A. Ihsan, O. Waqar, G.A.S. Sidhu, Resource opti-mization framework for physical layer security of dual-hop multi-carrier decode and forward relay networks, IEEE Open J. Antennas Propag. 2 (2021) 634-645.

[11]

Q. Li, L. Yang, Beamforming for cooperative secure transmission in cognitive two-way relay networks, IEEE Trans. Inf. Forensics Secur. 15 (2020) 130-143.

[12]

J. Park, S. Yun, I.-M. Kim, J. Ha, Secure communications with a full-duplex relay net-work under residual self-interference, IEEE Commun. Lett. 24 (3) (2020) 496-500.

[13]

Z. Zhu, et al., Active reconfigurable intelligent surface enhanced Internet of medical things, IEEE J. Biomed. Health Inform. 28 (7) (2024) 3831-3840.

[14]

Z. Zhu, et al., Intelligent reflecting surface-assisted wireless powered heterogeneous networks, IEEE Trans. Wirel. Commun. 22 (12) (2023) 9881-9892.

[15]

G. Zhang, Y. Gao, H. Luo, S. Wang, M. Guo, N. Sha, Security performance analysis for best relay selection in energy-harvesting cooperative communication networks, IEEE Access 8 (2020) 26-36.

[16]

T.N. Nguyen, et al., Physical layer security in AF-based cooperative SWIPT sensor networks, IEEE Sens. J. 23 (1) (2023) 689-705.

[17]

S. Xu, X. Song, Secure energy efficiency maximization for untrusted wireless-powered full-duplex relay networks under nonlinear energy harvesting, IEEE Syst. J. 16 (4) (2022) 5346-5356.

[18]

K. Cao, B. Wang, H. Ding, J. Tian, Adaptive cooperative jamming for secure com-munication in energy harvesting relay networks, IEEE Wirel. Commun. Lett. 8 (5) (2019) 1316-1319.

[19]

J. Ouyang, X. Wang, B. Xu, J. Zhu, W.-P. Zhu, Secrecy energy efficiency in full-duplex AF relay systems with untrusted energy harvesters, IEEE Commun. Lett. 25 (1) (2021) 3493-3497.

[20]

Y. Wang, T. Zhang, W. Yang, H. Yin, Y. Shen, H. Zhu, Secure communication via multiple RF-EH untrusted relays with finite energy storage, IEEE Int. Things J. 7 (2) (2020) 1476-1487.

[21]

C. Hu, Q. Li, Q. Zhang, J. Qin, “Security optimization for an AF MIMO two-way relay-assisted cognitive radio nonorthogonal multiple access networks with SWIPT, IEEE Trans. Inf. Forensics Secur. 17 (2022) 1481-1496.

[22]

T. Qiao, Y. Cao, J. Tang, N. Zhao, K.-K. Wong, IRS-aided uplink security enhancement via energy-harvesting jammer, IEEE Trans. Commun. 70 (12) (2022) 8286-8297.

[23]

D. Zhao, H. Tian, P. Zhang, A secure wireless information and energy cooperation transmission strategy in spectrum sharing networks with untrusted dual-relay, IEEE Access 7 (2019) 115487-115504.

[24]

K. Lee, J. Bang, H.-H. Choi, Secrecy outage minimization for wireless-powered relay networks with destination-assisted cooperative jamming, IEEE Int. Things J. 8 (3) (2021) 1467-1476.

[25]

W. Wang, et al., Energy-constrained UAV-assisted secure communications with po-sition optimization and cooperative jamming, IEEE Trans. Commun. 68 (7) (2020) 4476-4489.

[26]

Z. Mobini, M. Mohammadi, C. Tellambura, Wireless-powered full-duplex relay and friendly jamming for secure cooperative communications, IEEE Trans. Inf. Forensics Secur. 14 (3) (2019) 621-634.

[27]

Z. Zhu, J. Li, J. Yang, B. Ai, Robust Beamforming Design for STAR-RIS-Aided Secure SWIPT System With Bounded CSI Error, IEEE Trans. Green Commun. Netw. 8 (3) (2024) 968-977.

[28]

Z. Li, et al., Intelligent Reflective Surface Assisted Integrated Sensing and Wireless Power Transfer, IEEE Trans. Intell. Transp. Syst. 25 (10) (2024) 15122-15127.

[29]

X. Li, H. Zheng, C. He, X. Tian, X. Lin, Robust beamforming design for energy har-vesting efficiency maximization in RIS-aided SWIPT system, Digit. Commun. Netw. 10 (6) (2024) 1804-1812.

[30]

P. Tedeschi, S. Sciancalepore, R. Di Pietro, Security in energy harvesting networks: a survey of current solutions and research challenges, IEEE Commun. Surv. Tutor. 22 (4) (2020) 2658-2693.

[31]

X. Xu, M. Sun, W. Zhu, W. Feng, Y. Yao, Bidirectional link resource allocation strategy in GFDM-based Multiuser SWIPT systems, KSII Trans. Int. Inf. Syst. 16 (1) (2022) 319-333.

[32]

S.M. Mortazavi, F. Ashtiani, M. Mirmohseni, Optimal energy sharing for coopera-tive relaying in a random access network with energy harvesting nodes, IEEE Trans. Green Commun. Netw. 5 (1) (2021) 231-242.

[33]

M. Bloch, J. Barros, M.R.D. Rodrigues, S.W. McLaughlin, Wireless information-theoretic security, IEEE Trans. Inf. Theory 54 (6) (2008) 2515-2534.

[34]

S. Wang, M. Xia, Y.-C. Wu, Space-time signal optimization for SWIPT: linear versus nonlinear energy harvesting model, IEEE Commun. Lett. 22 (2) (2018) 408-411.

[35]

D.W.K. Ng, E.S. Lo, R. Schober, Energy-efficient resource allocation for secure OFDMA systems, IEEE Trans. Veh. Technol. 61 (6) (2012) 2572-2585.

[36]

Q. Han, B. Yang, G. Miao, C. Chen, X. Wang, X. Guan, Backhaul-aware user asso-ciation and resource allocation for energy-constrained HetNets, IEEE Trans. Veh. Technol. 66 (1) (2017) 580-593.

AI Summary AI Mindmap
PDF

304

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/