A survey on textual emotion cause extraction in social networks

Peng Sancheng , Cao Lihong , Wang Guojun , Ouyang Zhouhao , Zhou Yongmei , Yu Shui

›› 2025, Vol. 11 ›› Issue (2) : 524 -536.

PDF
›› 2025, Vol. 11 ›› Issue (2) : 524 -536. DOI: 10.1016/j.dcan.2024.07.004
Original article

A survey on textual emotion cause extraction in social networks

Author information +
History +
PDF

Abstract

With the rapid development of web technology, Social Networks (SNs) have become one of the most popular platforms for users to exchange views and to express their emotions. More and more people are used to commenting on a certain hot spot in SNs, resulting in a large amount of texts containing emotions. Textual Emotion Cause Extraction (TECE) aims to automatically extract causes for a certain emotion in texts, which is an important research issue in natural language processing. It is different from the previous tasks of emotion recognition and emotion classification. In addition, it is not limited to the shallow-level emotion classification of text, but to trace the emotion source. In this paper, we provide a survey for TECE. First, we introduce the development process and classification of TECE. Then, we discuss the existing methods and key factors for TECE. Finally, we enumerate the challenges and developing trend for TECE.

Keywords

Text / Emotion / Emotion cause / Machine learning / Deep learning

Cite this article

Download citation ▾
Peng Sancheng, Cao Lihong, Wang Guojun, Ouyang Zhouhao, Zhou Yongmei, Yu Shui. A survey on textual emotion cause extraction in social networks. , 2025, 11(2): 524-536 DOI:10.1016/j.dcan.2024.07.004

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Sancheng Peng: Writing - original draft, Methodology, Investigation, Funding acquisition. Lihong Cao: Writing - review & editing. Guojun Wang: Writing - review & editing, Funding acquisition. Zhouhao Ouyang: Project administration, Funding acquisition. Yongmei Zhou: Resources, Investigation. Shui Yu: Writing - review & editing, Methodology.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China under Grant No. 62372121, the Ministry of education of Humanities and Social Science project under Grant No. 20YJAZH118, the National Key Research and Development Program of China under Grant No. 2020YFB1005804, and the MOE Project at Center for Linguistics and Applied Linguistics, Guangdong University of Foreign Studies.

References

[1]

Z. Zhang, X. Li, C. Gan, Identifying influential nodes in social networks via com-munity structure and influence distribution difference, Digit. Commun. Netw. 7 (1) (2021) 131-139.

[2]

S. Peng, L. Cao, Y. Zhou, Z. Ouyang, A. Yang, X. Li, W. Jia, S. Yu, A survey on deep learning for textual emotion analysis in social networks, Digit. Commun. Netw. 8 (2022) 745-762.

[3]

S. Peng, R. Zeng, H. Liu, G. Chen, R. Wu, A. Yang, S. Yu,Emotion classification of text based on bert and broad learning system, in:Proceeding of the Asia Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint International Conference on Web and Big Data (APWeb-WAIM), 2021, pp. 382-396.

[4]

X. Qiu, D. Liu, C. Wan, J. Li, X. Liu, G. Liao, Survey on automatic emotion cause extraction from texts, J. Comput. Res. Dev. 59 (11) (2022) 2467-2496.

[5]

L. Cao, S. Peng, P. Yin, Y. Zhou, A. Yang, X. Li, A survey of emotion analysis in text based on deep learning, in: 2020 IEEE 8th International Conference on Smart City and Informatization (iSCI), 2020, pp. 81-88.

[6]

R. Xia, Z. Ding, Emotion-cause pair extraction: a new task to emotion analysis in texts,in:Proceedings of the 57th Conference of the Association for Computational Linguistics (ACL 2019), Florence, Italy, 2019, pp. 1003-1012.

[7]

Y. Chen, S.Y.M. Lee, S. Li, C.-R. Huang, Emotion cause detection with linguistic con-structions, in: Proceedings of the 23rd International Conference on Computational Linguistics, Beijing, China, 2010, pp. 179-187.

[8]

Z. Ding, H. He, M. Zhang, R. Xia, From independent prediction to re-ordered pre-diction: integrating relative position and global label information to emotion cause identification,in:Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI 2019), 2019, pp. 6343-6350.

[9]

R. Xia, M. Zhang, Z. Ding,Rthn a rnn-transformer hierarchical network for emotion cause extraction, in:Proceedings of the Twenty-Eighth International Joint Confer-ence on Artificial Intelligence (IJCAI-19), 2019, pp. 5285-5291.

[10]

O. l. dictionaries, emotion, https://en.oxforddictionaries.com/definition/emotion. (Accessed 13 May 2022).

[11]

Cambridge dictionary, emotion, https://dictionary.cambridge.org/us/dictionary/english/emotion. (Accessed 13 May 2022).

[12]

Dictionary by Merriam-Webster, emotion, https://www.merriam-webster.com/dictionary/emotion. (Accessed 13 May 2022).

[13]

X. Huang, Introduction to Psychology, Peoples Education Press, OBeijing, 1991.

[14]

E. Hudlicka, Guidelines for designing computational models of emotions, Int. J. Synth. Emot. 2 (1) (2011) 26-79.

[15]

M. Munezero, C. Montero, E. Sutinen, J. Pajunen, Are they different? Affect feeling, emotion, sentiment, and opinion detection in text, IEEE Trans. Affect. Comput. 5 (2) (2014) 101-111.

[16]

B. Liu, Sentiment Analysis: Mining Opinions, Sentiments, and Emotions, Cambridge University Press, 2015.

[17]

S. Poria, N. Majumder, R. Mihalcea, E. Hovy, Emotion recognition in conversa-tion: research challenges, datasets, and recent advances, IEEE Access 7 (2019) 100943-100953.

[18]

Emotions_online Chinese dictionary search, https://cihai.supfree.net/two.asp?id=131890. (Accessed 20May2022).

[19]

P. Ekman, An argument for basic emotions, Cogn. Emot. 6 (3/4) (1992) 169-200.

[20]

W. Parrott, Emotions in Social Psychology:Essential Readings, Psychology Press, Oxford, UK, 2001.

[21]

R. Plutchik, The nature of emotions, Philos. Stud. 89 (4) (2001) 393-409.

[22]

C. Lin, Emotional problems in socialist psychology, Sci. Soc. Psychol. 21 (83) (2006) 37-62.

[23]

S.Y.M. Lee, Y. Chen, C.-R. Huang, A text-driven rule-based system for emotion cause detection, in: Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, 2010, pp. 45-53.

[24]

L. Gui, D. Wu, R. Xu, Q. Lu, Y. Zhou, Event-driven emotion cause extraction with corpus construction, in: Proceedings of the 2016 Conference on Empirical Meth-ods in Natural Language Processing (EMNLP 2016), Austin, Texas, USA, 2016, pp. 1639-1649.

[25]

S.Y.M. Lee, Y. Chen, S. Li, C.-R. Huang, Emotion cause events: corpus construction and analysis,in:Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC 2010), Valletta, Malta, 2010, pp. 1121-1128.

[26]

I. Russo, T. Caselli, F. Rubino, E. Boldrini, P. Martiínez-Barco, Emocause: an easy-adaptable approach to emotion cause contexts,in:Proceedings of the 2nd Work-shop on Computational Approaches to Subjectivity and Sentiment Analysis, Port-land, Oregon, USA, 2011, pp. 153-160.

[27]

A. Neviarouskaya, M. Aono,Extracting causes of emotions from text, in:Proceed-ings of the International Joint Conference on Natural Language Processing (IJC-NLP), 2013, pp. 932-936.

[28]

L. Gui, L. Yuan, R. Xu, B. Liu, Q. Lu, Y. Zhou,Emotion cause detection with lin-guistic construction in Chinese Weibo text, in:Proceedings of the Natural Language Processing and Chinese Computing, 2014, pp. 457-464.

[29]

W. Li, H. Xu, Text-based emotion classification using emotion cause extraction, Expert Syst. Appl. 41 (4) (2014) 1742-1749.

[30]

K. Gao, H. Xu, J. Wang, A rule-based approach to emotion cause detection for Chinese micro-blogs, Expert Syst. Appl. 42 (2015) 4517-4528.

[31]

D. Ghazi, D. Inkpen, S. Szpakowicz, Detecting emotion stimuli in emotion-bearing sentences, in: Processing of the Computational Linguistics and Intelligent Text, 2015, pp. 152-165.

[32]

X. Cheng, Y. Chen, B. Cheng, S. Li, G. Zhou, An emotion cause corpus for Chinese microblogs with multiple-user structures, ACM Trans. Asian Low-Resour. Lang. Inf. Process. 17 (1) (2017) 1-19.

[33]

Q. Gao, L. Gui, Y. He, J. Hu, Q. Lu, R. Xu, K.-F. Wong, Overview of ntcir-13 eca task, in: Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies, Tokyo Japan, 2017, pp. 361-366.

[34]

S. Yada, K. Ikeda, K. Hoashi, K. Kageura,A bootstrap method for automatic rule acquisition on emotion cause extraction, in:Proceedings of the IEEE International Conference on Data Mining Workshops, 2017, pp. 414-421.

[35]

X. Chen, Q. Li, J. Wang,Conditional causal relationships between emotions and causes in texts, in:Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2020, pp. 3111-3121.

[36]

C. Cortes, V. Vapnik, Support vector networks, Mach. Learn. 20 (1995) 273-297.

[37]

G. Lanckriet, N. Cristianini, P. Bartlett, L.E. Ghaoui, Learning the kernel matrix with semidefinite programming, J. Mach. Learn. Res. 5 (2004) 27-72.

[38]

J.D. Lafferty, A. McCallum, F.C.N. Pereira, Conditional random fields: probabilistic models for segmenting and labeling sequence data,in: Proceedings of the 18th International Conference on Machine Learning, 2001, pp. 282-289.

[39]

Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to doc-ument recognition, Browse J. Mag. 86 (11) (1998) 2278-2324.

[40]

C.L. Giles, G.M. Kuhn, R.J. Williams, Dynamic recurrent neural networks: theory and applications, IEEE Trans. Neural Netw. 5 (1994) 153-156.

[41]

S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (8) (1997) 1735-1780.

[42]

M. Schuster, K. Paliwal, Bidirectional recurrent neural networks, IEEE Trans. Signal Process. 45 (11) (1997) 2673-2681.

[43]

K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio, Learning phrase representations using rnn encoder-decoder for statistical machine translation, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, 2014, pp. 1724-1734.

[44]

Z. Wang, B. Zhang,Improved bi-gru model for imbalanced English toxic comments dataset, in:Proceedings of the 5th International Conference on Natural Language Processing and Information Retrieval, 2021, pp. 24-29.

[45]

L. Itti, C. Koch, Computational modelling of visual attention, Nat. Rev. Neurosci. 2 (3) (2001) 194-203.

[46]

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, I. Polosukhin, Attention is all you need, in: Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, California, USA, 2017, pp. 5999-6009.

[47]

T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional net-works, in: Proceedings of the 5th International Conference on Learning Represen-tations (ICLR 2017), 2017.

[48]

Y. Hechtlinger, P. Chakravarti, J. Qin, A generalization of convolutional neural networks to graph-structured data, https://doi.org/10.48550/arXiv.1704.08165.

[49]

P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph at-tention networks, in: Proceedings of the 6th International Conference on Learning Representations (ICLR 2018), 2018.

[50]

T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word represen-tations in vector space, in: Proceedings of the 1st International Conference on Learning Representations (ICLR 2013), Scottsdale, Arizona, USA, 2013.

[51]

J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: pre-training of deep bidi-rectional transformers for language understanding,in:Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics, Minneapolis, Minnesota, 2019, pp. 4171-4186.

[52]

M. Bouazizi, T. Ohtsuki, Multi-class sentiment analysis on Twitter: classification performance and challenges, Big Data Min. Anal. 2 (3) (2019) 181-194.

[53]

W. Zhao, Z. Guan, L. Chen, X. He, D. Cai, B. Wang, Q. Wang, Weakly-supervised deep embedding for product review sentiment analysis, IEEE Trans. Knowl. Data Eng. 30 (1) (2018) 185-197.

[54]

G. Chen, S. Peng, R. Zeng, Z. Hu, L. Cao, Y. Zhou, Z. Ouyang, X. Nie, p-norm broad learning for negative emotion classification in social networks, Big Data Min. Anal. 5 (3) (2022) 245-256.

[55]

Y. Lv, F. Wei, L. Cao, S. Peng, J. Niu, S. Yu, C. Wang, Aspect-level sentiment analysis using context and aspect memory network, Neurocomputing 428 (2021) 195-205.

[56]

S. Peng, R. Zeng, H. Liu, L. Cao, G. Wang, J. Xie, Deep broad learning for emo-tion classification in textual conversations, Tsinghua Sci. Technol. 29 (2) (2024) 481-491.

[57]

L. Cao, R. Zeng, S. Peng, A. Yang, J. Niu, S. Yu, Textual emotion classification using mpnet and cascading broad learning, Neural Netw. (2024), https://doi.org/10.1016/j.neunet.2024.106582.

[58]

L. Gui, R. Xu, Q. Lu, D. Wu, Y. Zhou, Emotion cause extraction, a challenging task with corpus construction,in: Proceedings of the Chinese National Conference on Social Media Processing, 2016, pp. 98-109.

[59]

R. Xu, J. Hu, Q. Lu, D. Wu, L. Gui, An ensemble approach for emotion cause de-tection with event extraction and multi-kernel svms, Tsinghua Sci. Technol. 22 (6) (2017) 646-659.

[60]

B. Xu, H. Lin, Y. Lin, Y. Diao, L. Yang, K. Xu, Extracting emotion causes using learning to rank methods from an information retrieval perspective, IEEE Access 7 (2019) 15573-15583.

[61]

L. Gui, J. Hu, Y. He, R. Xu, Q. Lu, J. Du, A question answering approach to emotion cause extraction, in: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 2017, pp. 1593-1602.

[62]

X. Li, K. Song, S. Feng, D. Wang, Y. Zhang, A co-attention neural network model for emotion cause, in: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 2018, pp. 4752-4757.

[63]

Y. Chen, W. Hou, X. Cheng,Hierarchical convolution neural network for emotion cause detection on microblogs, in:Proceedings of the International Conference on Artificial Neural Networks (ICANN), 2018, pp. 115-122.

[64]

Y. Chen, W. Hou, X. Cheng, S. Li, Joint learning for emotion classification and emo-tion cause detection, in: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 2018, pp. 646-651.

[65]

C. Fan, H. Yan, J. Du, L. Gui, L. Bing, M. Yang, R. Xu, R. Mao, A knowledge reg-ularized hierarchical approach for emotion cause analysis, in: Proceedings of the 2019 Conference on Empirical Methods in Natural Language, Hong Kong, China, 2019, pp. 5614-5624.

[66]

J. Hu, S. Shi, H. Huang, Combining external sentiment knowledge for emotion cause detection, in: Proceedings of the 8th CCF International Conference on Natural Lan-guage Processing and Chinese Computing (NLPCC 2019), 2019, pp. 711-722.

[67]

X. Li, S. Feng, D. Wang, Y. Zhang, Context-aware emotion cause analysis with multi-attention-based neural network, Knowl.-Based Syst. 174 (2019) 205-218.

[68]

X. Xiao, P. Wei, W. Mao, L. Wang, Context-aware multi-view attention networks for emotion cause extraction, in: Proceedings of the IEEE International Confer-ence on Intelligence and Security Informatics (ISI 2019), Shenzhen, China, 2019, pp. 128-133.

[69]

X. Yu, W. Rong, Z. Zhang, Y. Ouyang, Z. Xiong, Multiple level hierarchical network-based clause selection for emotion cause extraction, IEEE Access 7 (1) (2019) 9071-9079.

[70]

Y. Diao, H. Lin, L. Yang, X. Fan, Y. Chu, D. Wu, K. Xu, B. Xu, Multi-granularity bidirectional attention stream machine comprehension method for emotion cause extraction, Neural Comput. Appl. 32 (2020) 8401-8413.

[71]

J. Wu, J. Bao, G. Lan, R. Xu, Emotion cause extraction using rule distillation, J. Tsinghua Univ. (Sci. Technol.) 60 (5) (2020) 422-429.

[72]

Y. Diao, H. Lin, L. Yang, X. Fan, Y. Chu, D. Wu, K. Xu, Emotion cause detection with enhanced-representation attention convolutional-context network, Soft Comput. 25 (2021) 1297-1307.

[73]

G. Hu, G. Lu, Y. Zhao, Fss-gcn a graph convolutional networks with fusion of se-mantic and structure for emotion cause analysis, Knowl.-Based Syst. 212 (2021) 106584.

[74]

M. Li, H. Zhao, H. Su, Y. Qian, P. Li, Emotion-cause span extraction: a new task to emotion cause identification in texts, Appl. Intell. 51 (10) (2021) 7109-7121.

[75]

P. Lin, M. Yang, Y. Gu,A hierarchical inter-clause interaction network for emotion cause extraction, in:Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN), 2021, pp. 1-8.

[76]

X. Li, S. Feng, Y. Zhang, D. Wang,Multi-level emotion cause analysis by multi-head attention based multi-task learning, in:Proceedings of the 20th Chinese National Conference on Computational Linguistics, 2021, pp. 928-939.

[77]

W. Cao, K. Zhang, S. Ruan, H. Tao, S. Zhao, H. Wang, Q. Liu, E. Chen, Causal narrative comprehension: a new perspective for emotion cause extraction, IEEE Trans. Affect. Comput. 13 (4) (2022) 1743-1758.

[78]

H. Tang, D. Ji, Q. Zhou, Joint multi-level attentional model for emotion detection and emotion-cause pair extraction, Neurocomputing 409 (2020) 329-340.

[79]

Z. Cheng, Z. Jiang, Y. Yin, H. Yu, Q. Gu, A symmetric local search network for emotion-cause pair extraction, in: Proceedings of the 28th International Conference on Computational Linguistics, Barcelona, Spain, 2020, pp. 139-149.

[80]

X. Chen, Q. Li, J. Wang, A unified sequence labeling model for emotion cause pair extraction, in: Proceedings of the 28th International Conference on Computational Linguistics, Barcelona, Spain, 2020, pp. 208-218.

[81]

R. Fan, Y. Wang, T. He, An end-to-end multi-task learning network with scope controller for emotion-cause pair extraction, in: Proceedings of the 9th CCF In-ternational Conference on Natural Language Processing and Chinese Computing (NLPCC 2020), 2020, pp. 764-776.

[82]

H. Song, C. Zhang, Q. Li, D. Song, An end-to-end multi-task learning to link frame-work for emotion-cause pair extraction, in: Proceedings the International Confer-ence on Image, Video Processing, and Artificial Intelligence, Bellingham, 2021.

[83]

Z. Ding, R. Xia, J. Yu,Ecpe-2d emotion-cause pair extraction based on joint two-dimensional representation interaction and prediction, in:Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020, pp. 3161-3170.

[84]

P. Wei, J. Zhao, W. Mao,Effective inter-clause modeling for end-to-end emotion-cause pair extraction, in:Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020, pp. 3171-3181.

[85]

C. Yuan, C. Fan, J. Bao, R. Xu,Emotion-cause pair extraction as sequence label-ing based on a novel tagging scheme, in:Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, 2020, pp. 3568-3573.

[86]

Z. Ding, R. Xia, J. Yu,End-to-end emotion-cause pair extraction based on sliding window multi-label learning, in:Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, 2020, pp. 3574-3583.

[87]

Y. Chen, W. Hou, S. Li, C. Wu, X. Zhang, End-to-end emotion-cause pair extrac-tion with graph convolutional network, in: Proceedings of the 28th International Conference on Computational Linguistics, Barcelona, Spain, 2020, pp. 198-207.

[88]

C. Fan, C. Yuan, J. Du, L. Gui, M. Yang, R. Xu,Transition-based directed graph construction for emotion-cause pair extraction, in:Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020, pp. 3707-3717.

[89]

J. Shan, M. Zhu, A new component of interactive multi-task network model for emotion-cause pair extraction, J. Phys. Conf. Ser. 1693 (1) (2020) 012022.

[90]

S. Wu, F. Chen, F. Wu, Y. Huang, X. Li, A Multi-Task Learning Neural Network for Emotion-Cause Pair Extraction, IOS Press, 2020, pp. 2212-2219.

[91]

J. Yu, W. Liu, Y. He, C. Zhang, A mutually auxiliary multitask model with self-distillation for emotion-cause pair extraction, IEEE Access 9 (2021) 26811-26821.

[92]

Z. Cheng, Z. Jiang, Y. Yin, N. Li, Q. Gu, A unified target-oriented sequence-to-sequence model for emotion-cause pair extraction, IEEE/ACM Trans. Audio Speech Lang. Process. 29 (2021) 2779-2791.

[93]

S. Aaditya, H. Shreeshail, W. Saim, M. Ashutosh, An end-to-end network for emotion-cause pair extraction, in: Proceedings of the Eleventh Workshop on Com-putational Approaches to Subjectivity, Sentiment and Social Media Analysis, 2021, pp. 84-91.

[94]

X. Yang, Y. Yang, Emotion-type-based global attention neural network for emotion-cause pair extraction, in: Proceedings of the International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, 2021, pp. 546-557.

[95]

C. Fan, C. Yuan, L. Gui, Y. Zhang, R. Xu, Multi-task sequence tagging for emotion-cause pair extraction via tag distribution refinement, IEEE/ACM Trans. Audio Speech Lang. Process. 29 (2021) 2339-2350.

[96]

J. Shi, H. Li, J. Zhou, Zhicheng Pang, Chiyu Wang, Optimizing emotion-cause pair extraction task by using mutual assistance single-task model, clause position infor-mation and semantic features, J. Supercomput. 78 (2021) 4759-4778.

[97]

W. Fan, Y. Zhu, Z. Wei, T. Yang, W. Ip, Y. Zhang, Order-guided deep neural network for emotion-cause pair prediction, Appl. Soft Comput. 112 (2021) 107818.

[98]

F. Chen, Z. Shi, Z. Yang, Y. Huang, Recurrent synchronization network for emotion-cause pair extraction, Knowl.-Based Syst. 238 (2022) 107965.

[99]

C. Yang, Z. Zhang, J. Ding, W. Zheng, Z. Jing, Y. Li,A multi-granularity network for emotion-cause pair extraction via matrix capsule, in:Proceedings of the 31st

[100]

ACM International Conference on Information & Knowledge Management, 2022, pp. 4625-4629.

[101]

S. Chen, X. Shi, J. Li, S. Wu, H. Fei, F. Li, D. Ji,Joint alignment of multi-task feature and label spaces for emotion cause pair extraction, in:Proceedings of the 29th International Conference on Computational Linguistics, 2022, pp. 6955-6965.

[102]

C. Zhou, D. Song, J. Xu, Z. Wu,A multi-turn machine reading comprehension framework with rethink mechanism for emotion-cause pair extraction, in:Pro-ceedings of the 29th International Conference on Computational Linguistics, 2022, pp. 6726-6735.

[103]

C. Li, J. Hu, T. Li, S. Du, F. Teng, An effective multi-task learning model for end-to-end emotion-cause pair extraction, Appl. Intell. 53 (2023) 3519-3529.

[104]

Z. Cheng, Z. Jiang, Y. Yin, C. Wang, S. Ge, Q. Gu, A consistent dual-mrc framework for emotion-cause pair extraction, ACM Trans. Inf. Syst. 41 (4) (2023) 1-27.

[105]

Y. Hao, Q. Zheng, Y. Chen, C. Yan, Recognition of abnormal behavior based on data of public opinion on the web, J. Comput. Res. Dev. 53 (3) (2016) 611-620.

[106]

S. Bharti, B. Vachha, R. Pradhan, K. Babu, S. Jena, Sarcastic sentiment detection in tweets streamed in real time: a big data approach, Digit. Commun. Netw. 2 (2016) 108-121.

[107]

C. Yang, X. Lai, Z. Hu, Y. Liu, P. Shen, Depression tendency screening use text based emotional analysis technique, J. Phys. Conf. Ser. 1237 (2019) 1-10.

[108]

C. Tucker, B. Pursel, A. Divinsky, Mining student-generated textual data in MOOCs and quantifying their effects on student performance and learning outcomes, ASEE Comput. Educ. J. 5 (4) (2014) 84.

[109]

J. Pennington, R. Socher, C. Manning, GloVe: global vectors for word represen-tation,in:Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 2014, pp. 1532-1543.

[110]

S. Peng, G. Wang, Y. Zhou, C. Wan, C. Wang, S. Yu, J. Niu, An immunization frame-work for social networks through big data based influence modeling, IEEE Trans. Dependable Secure Comput. 16 (6) (2019) 984-995.

[111]

J. Wei, J. Liao, Z. Yang, S. Wang, Q. Zhao, Bilstm with multi-polarity orthogonal attention for implicit sentiment analysis, Neurocomputing 383 (2020) 165-173.

[112]

R. Zeng, H. Liu, S. Peng, L. Cao, A. Yang, C. Zong, G. Zhou, Cnn-based broad learn-ing for cross-domain emotion classification, Tsinghua Sci. Technol. 28 (2) (2023) 360-369.

[113]

S. Peng, R. Zeng, L. Cao, A. Yang, J. Niu, C. Zong, G. Zhou, Multi-source domain adaptation method for textual emotion classification using deep and broad learning, Knowl.-Based Syst. 260 (2023) 110173.

[114]

Z. Ahmad, R. Jindal, A. Ekbal, P. Bhattachharyya, Borrow from rich cousin: transfer learning for emotion detection using cross lingual embedding, Expert Syst. Appl. 139 (2020) 112851.

[115]

B. Liu, S. Tang, X. Sun, Q. Chen, J. Cao, J. Luo, S. Zhao, Context-aware social media user sentiment analysis, Tsinghua Sci. Technol. 25 (4) (2020) 528-541.

[116]

S. Poria, E. Cambria, R. Bajpai, A. Hussain, A review of affective computing: from unimodal analysis to multimodal fusion, Inf. Fusion 37 ( 2017) 98-125.

[117]

Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R.R. Salakhutdinov, Q.V. Le, Xlnet: general-ized autoregressive pretraining for language understanding, in: Advances in Neural Information Processing Systems, 2019, pp. 5753-5763.

[118]

K. Song, X. Tan, T. Qin, J. Lu, T.-Y. Liu,Mpnet: masked and permuted pre-training for language understanding, Adv. Neural Inf. Process. Syst. 33 (2020) 16857-16867.

AI Summary AI Mindmap
PDF

419

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/