PDF
Abstract
Unmanned Aerial Vehicles (UAVs) have been considered to have great potential in supporting reliable and timely data harvesting for Sensor Nodes (SNs) from an Internet of Things (IoT) perspective. However, due to physical limitations, UAVs are unable to further process the harvested data and have to rely on terrestrial servers, thus extra spectrum resource is needed to convey the harvested data. To avoid the cost of extra servers and spectrum resources, in this paper, we consider a UAV-based data harvesting network supported by a Cell-Free massive Multiple-Input-Multiple-Output (CF-mMIMO) system, where a UAV is used to collect and transmit data from SNs to the central processing unit of CF-mMIMO system for processing. In order to avoid using additional spectrum resources, the entire bandwidth is shared among radio access networks and wireless fronthaul links. Moreover, considering the limited capacity of the fronthaul links, the compress-and-forward scheme is adopted. In this work, in order to maximize the ergodically achievable sum rate of SNs, the power allocation of ground access points, the compression of fronthaul links, and also the bandwidth fraction between radio access networks and wireless fronthaul links are jointly optimized. To avoid the high overhead introduced by computing ergodically achievable rates, we introduce an approximate problem, using the large-dimensional random matrix theory, which relies only on statistical channel state information. We solve the nontrivial problem in three steps and propose an algorithm based on weighted minimum mean square error and Dinkelbach’s methods to find solutions. Finally, simulation results show that the proposed algorithm converges quickly and outperforms the baseline algorithms.
Keywords
UAV
/
Data harvesting
/
CF-mMIMO
/
Compress-and-forward
/
Random matrix theory
Cite this article
Download citation ▾
Linlin Xu, Qi Zhu, Wenchao Xia, Jun Zhang, Gan Zheng, Hongbo Zhu.
Sum rate maximization in UAV-assisted data harvesting network supported by CF-mMIMO system exploiting statistical CSI.
, 2025, 11(4): 1280-1292 DOI:10.1016/j.dcan.2024.06.009
| [1] |
W. Mao, Z. Zhao, Z. Chang, G. Min, W. Gao, Energy-efficient industrial Internet of Things: overview and open issues, IEEE Trans. Ind. Inform. 17 (11) (2021) 7225-7237.
|
| [2] |
J. Li, R. Kacimi, T. Liu, X. Ma, R. Dhaou, Non-terrestrial networks-enabled Internet of Things: UAV-centric architectures, applications, and open issues, Drones 6(4)(2022) 95-128.
|
| [3] |
X. Wang, X. Liu, C.-T. Cheng, L. Deng, X. Chen, F. Xiao, A joint user scheduling and trajectory planning data collection strategy for the UAV-assisted WSN, IEEE Commun. Lett. 25 (7) (2021) 2333-2337.
|
| [4] |
H. Zhao, H. Wang, W. Wu, J. Wei, Deployment algorithms for UAV airborne net-works toward on-demand coverage, IEEE J. Sel. Areas Commun. 36 (9) (2018) 2015-2031.
|
| [5] |
A. Fascista, Toward integrated large-scale environmental monitoring using WSN/UAV/Crowdsensing: a review of applications, signal processing, and future perspectives, Sensors 22 (5) (2022) 1824-1888.
|
| [6] |
Y. Xia, W. Liu, J. Xie, M. Xu, H. Li, Q. Zhang, C. Xu, S. Hu, D. Huang, Characteriza-tion of low-power wireless links in UAV-assisted wireless-sensor network, IEEE Int. Things J. 10 (7) (2023) 5823-5842.
|
| [7] |
M. Li, S. He, H. Li, Minimizing mission completion time of UAVs by jointly optimiz-ing the flight and data collection trajectory in UAV-enabled WSNs, IEEE Int. Things J. 9 (15) (2022) 13498-13510.
|
| [8] |
H. Wang, H. Zhao, J. Zhang, D. Ma, J. Li, J. Wei, Survey on unmanned aerial vehicle networks: a cyber physical system perspective, IEEE Commun. Surv. Tutor. 22 (2)(2019) 1027-1070.
|
| [9] |
M.T. Nguyen, C.V. Nguyen, H.T. Do, H.T. Hua, T.A. Tran, A.D. Nguyen, G. Ala, F. Viola, UAV-assisted data collection in wireless sensor networks: a comprehensive survey, Electronics 10 (21) (2021) 2603-2626.
|
| [10] |
H.Q. Ngo, A. Ashikhmin, H. Yang, E.G. Larsson, T.L. Marzetta, Cell-free massive mimo versus small cells, IEEE Trans. Wirel.commun. 16 (3) (2017) 1834-1850.
|
| [11] |
B. Hu, C. Hua, C. Chen, X. Guan, Joint beamformer design for wireless fronthaul and access links in C-RANs, IEEE Trans. Wirel.commun. 17 (5) (2018) 2869-2881.
|
| [12] |
W. Feng, J. Wang, Y. Chen, X. Wang, N. Ge, J. Lu, UAV-aided MIMO communications for 5G Internet of Things, IEEE Int. Things J. 6(2) (2019) 1731-1740.
|
| [13] |
C. Zhan, Y. Zeng, R. Zhang, Energy-efficient data collection in UAV enabled wireless sensor network, IEEE Wirel. Commun. Lett. 7(3) (2017) 328-331.
|
| [14] |
C. Zhan, Y. Zeng, Aerial-ground cost tradeoff for multi-UAV-enabled data collection in wireless sensor networks, IEEE Trans. Commun. 68 (3) (2019) 1937-1950.
|
| [15] |
J. Zhang, Y. Zeng, R. Zhang, Multi-antenna UAV data harvesting: joint trajectory and communication optimization, J.commun. Inf. Netw. 5(1) (2020) 86-99.
|
| [16] |
S. Elhoushy, M. Ibrahim, W. Hamouda, Cell-free massive MIMO: a survey, IEEE Commun. Surv. Tutor. 24 (1) (2021) 492-523.
|
| [17] |
L. Liu, Y.-F. Liu, P. Patil, W. Yu, Uplink-downlink duality between multiple-access and broadcast channels with compressing relays, IEEE Trans. Inf. Theory 67 (11)(2021) 7304-7337.
|
| [18] |
E. Björnson, L. Sanguinetti, Making cell-free massive MIMO competitive with MMSE processing and centralized implementation, IEEE Trans. Wirel.commun. 19 (1)(2019) 77-90.
|
| [19] |
R. Couillet, M. Debbah, Random Matrix Methods for Wireless Communications, Cambridge University Press, 2011.
|
| [20] |
J. Chen, J. Tang, UAV-assisted data collection for dynamic and heterogeneous wire-less sensor networks, IEEE Wirel. Commun. Lett. 11 (6) (2022) 1288-1292.
|
| [21] |
X. Zhang, H. Zhao, J. Wei, C. Yan, J. Xiong, X. Liu, Cooperative trajectory design of multiple UAV base stations with heterogeneous graph neural networks, IEEE Trans. Wirel.commun. 22 (3) (2022) 1495-1509.
|
| [22] |
T. Choi, J. Gomez-Ponce, C. Bullard, I. Kanno, M. Ito, T. Ohseki, K. Yamazaki, A.F. Molisch, Using a drone sounder to measure channels for cell-free massive MIMO systems, in: Proc. 2022 IEEE Wireless Communications and Networking Conference, WCNC, Austin, TX, USA, 2022, pp. 2506-2511.
|
| [23] |
C. Liu, W. Feng, Y. Chen, C.-X. Wang, N. Ge, Cell-free satellite-UAV networks for 6G wide-area Internet of Things, IEEE J. Sel. Areas Commun. 39 (4) (2020) 1116-1131.
|
| [24] |
C. Diaz-Vilor, A. Lozano, H. Jafarkhani, On the deployment problem in cell-free UAV networks, in: Proc. 2021 IEEE Global Communications Conference, GLOBECOM, Madrid, Spain, 2021, pp. 1-6.
|
| [25] |
W. Xia, J. Zhang, T.Q.S. Quek, S. Jin, H. Zhu, Joint optimization of fronthaul com-pression and bandwidth allocation in uplink H-CRAN with large system analysis, IEEE Trans. Commun. 66 (12) (2018) 6556-6569.
|
| [26] |
L. Liu, R. Zhang, Optimized uplink transmission in multi-antenna C-RAN with spatial compression and forward, IEEE Trans. Signal Process. 63 (19) (2015) 5083-5095.
|
| [27] |
S.-H. Park, O. Simeone, O. Sahin, S. Shamai, Joint precoding and multivariate back-haul compression for the downlink of cloud radio access networks, IEEE Trans. Signal Process. 61 (22) (2013) 5646-5658.
|
| [28] |
Y. Zhou, W. Yu, Fronthaul compression and transmit beamforming optimization for multi-antenna uplink C-RAN, IEEE Trans. Signal Process. 64 (16) (2016) 4138-4151.
|
| [29] |
Y. Zeng, J. Xu, R. Zhang, Energy minimization for wireless communication with rotary-wing UAV, IEEE Trans. Wirel.commun. 18 (4) (2019) 2329-2345.
|
| [30] |
A.M. Ikotun, A.E. Ezugwu, L. Abualigah, B. Abuhaija, J. Heming, K-means clustering algorithms: a comprehensive review, variants analysis, and advances in the era of big data, Inf. Sci. 622 (2023) 178-210.
|
| [31] |
Z. Lyu, G. Zhu, J. Xu, Joint maneuver and beamforming design for UAV-enabled integrated sensing and communication, IEEE Trans. Wirel.commun. 22 (4) (2022) 2424-2440.
|
| [32] |
G. Lebrun, M. Faulkner, M. Shafi, P.J. Smith, MIMO Ricean channel capacity, in: Proc. IEEE International Conference on Communications, ICC, Paris, France, vol. 5, 2004, pp. 2939-2943.
|
| [33] |
L. Liu, S. Bi, R. Zhang, Joint power control and fronthaul rate allocation for through-put maximization in OFDMA-based cloud radio access network, IEEE Trans. Com-mun. 63 (11) (2015) 4097-4110.
|
| [34] |
Y. Xu, T. Zhang, Y. Liu, D. Yang, L. Xiao, M. Tao, UAV-assisted MEC networks with aerial and ground cooperation, IEEE Trans. Wirel.commun. 20 (12) (2021) 7712-7727.
|
| [35] |
M. Grant, S. Boyd, CVX: Matlab Software for Disciplined Convex Programming, ver-sion 2.1, 2014.
|
| [36] |
Q. Shi, M. Razaviyayn, Z.-Q. Luo, C. He, An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel, IEEE Trans. Signal Process. 59 (9) (2011) 4331-4340.
|
| [37] |
W. Dinkelbach, On nonlinear fractional programming, Manag. Sci. 13 (7) (1967) 492-498.
|
| [38] |
G. Scutari, F. Facchinei, L. Lampariello, P. Song, Distributed methods for constrained nonconvex multi-agent optimization-part I: theory, arXiv preprint, arXiv :1410.4754.
|
| [39] |
A. Ben-Tal, A. Nemirovski, Lectures on Modern Convex Optimization: Analysis, Al-gorithms and Engineering Applications, SIAM, 2001.
|
| [40] |
Y. Zeng, R. Zhang, Energy-efficient UAV communication with trajectory optimiza-tion, IEEE Trans. Wirel.commun. 16 (6) (2017) 3747-3760.
|
| [41] |
Y. Xu, T. Zhang, D. Yang, Y. Liu, M. Tao, Joint resource and trajectory optimiza-tion for security in UAV-assisted MEC systems, IEEE Trans. Commun. 69 (1) (2020) 573-588.
|
| [42] |
Q. Wu, R. Zhang, Common throughput maximization in UAV-enabled OFDMA sys-tems with delay consideration, IEEE Trans. Commun. 66 (12) (2018) 6614-6627.
|
| [43] |
S. Wagner, R. Couillet, M. Debbah, D.T. Slock, Large system analysis of linear pre-coding in correlated MISO broadcast channels under limited feedback, IEEE Trans. Inf. Theory 58 (7) (2012) 4509-4537.
|
| [44] |
J. Hoydis, S. Ten Brink, M. Debbah, Massive MIMO in the UL/DL of cellular net-works: how many antennas do we need?, IEEE J. Sel. Areas Commun. 31 (2) (2013) 160-171.
|
| [45] |
S. Boyd, S.P. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
|