Digital cancellation of multi-band passive inter-modulation based on Wiener-Hammerstein model

Jinxiang Liu , Xiaotao Zhang , Jun Yang , Huiping Yang

›› 2024, Vol. 10 ›› Issue (4) : 1189 -1197.

PDF
›› 2024, Vol. 10 ›› Issue (4) :1189 -1197. DOI: 10.1016/j.dcan.2024.06.002
Research article
research-article

Digital cancellation of multi-band passive inter-modulation based on Wiener-Hammerstein model

Author information +
History +
PDF

Abstract

Utilizing multi-band and multi-carrier techniques enhances throughput and capacity in Long-Term Evolution (LTE)-Advanced and 5G New Radio (NR) mobile networks. However, these techniques introduce Passive Inter-Modulation (PIM) interference in Frequency-Division Duplexing (FDD) systems. In this paper, a novel multi-band Wiener-Hammerstein model is presented to digitally reconstruct PIM interference signals, thereby achieving effective PIM Cancellation (PIMC) in multi-band scenarios. In the model, transmitted signals are independently processed to simulate Inter-Modulation Distortions (IMDs) and Cross-Modulation Distortions (CMDs). Furthermore, the Finite Impulse Response (FIR) filter, basis function generation, and B-spline function are applied for precise PIM product estimation and generation in multi-band scenarios. Simulations involving 4 carrier components from diverse NR frequency bands at varying transmitting powers validate the feasibility of the model for multi-band PIMC, achieving up to 19 dB in PIMC performance. Compared to other models, this approach offers superior PIMC performance, exceeding them by more than 5 dB in high transmitting power scenarios. Additionally, its lower sampling rate requirement reduces the hardware complexity associated with implementing multi-band PIMC.

Keywords

Passive inter-modulation / Frequency-division duplexing / Nonlinear distortion / Digital cancellation / Spline interpolation / Wiener-Hammerstein model

Cite this article

Download citation ▾
Jinxiang Liu, Xiaotao Zhang, Jun Yang, Huiping Yang. Digital cancellation of multi-band passive inter-modulation based on Wiener-Hammerstein model. , 2024, 10(4): 1189-1197 DOI:10.1016/j.dcan.2024.06.002

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M.Z. Waheed, P.P. Campo, D. Korpi, A. Kiayani, L. Anttila, M. Valkama, Digital cancellation of passive intermodulation in FDD transceivers, in: 2018 52nd Asilomar Conference on Signals, Systems, and Computers, 2018, pp. 1375-1381.

[2]

B. Liang, X. Bu, M. Li, P. Guo, C. Liu,A novel RTRLNN model for passive intermodu-lation cancellation in satellite communications, in:2018 14th International Wireless Communications and Mobile Computing Conference (IWCMC), 2018, pp. 18-23.

[3]

Q. Jin, J. Gao, G.T. Flowers, Y. Wu, G. Xie, Modeling of passive intermodulation with electrical contacts in coaxial connectors, IEEE Trans. Microw. Theory Tech. 66 (9) (2018) 4007-4016.

[4]

M.Z. Waheed, D. Korpi, A. Kiayani, L. Anttila, M. Valkama,Digital cancellation of passive intermodulation: method, complexity and measurements, in: 2019 IEEE MTT-S International Microwave Conference on Hardware and Systems for 5G and Beyond (IMC-5G), 2019, pp. 1-3.

[5]

L. Tian, H. Han, W. Cao, X. Bu, S. Wang, Adaptive suppression of passive intermod-ulation in digital satellite transceivers, Chin. J. Aeronaut. 30 (3) (2017) 1154-1160.

[6]

M.Z. Waheed, V. Lampu, A. Kiayani, M. Fleischer, L. Anttila, M. Valkama, Modeling and digital suppression of passive nonlinear distortion in simultaneous transmit-receive systems, in: 2022 56th Asilomar Conference on Signals, Systems, and Com-puters, 2022, pp. 1339-1344.

[7]

J. Ou, L. Tian, J. Liu, C. Liu, Passive intermodulation interference suppression through sparse discrete fractional Fourier transform, in: 2018 2nd International Conference on Data Mining, Communications and Information Technology (DMCIT 2018), 2018, 012002.

[8]

A.L. Walker, Behavioral Modeling and Characterization of Nonlinear Operation in RF and Microwave Systems, North Carolina State University, North Carolina, 2006.

[9]

M.Z. Waheed, D. Korpi, L. Anttila, A. Kiayani, M. Kosunen, K. Stadius, P.P. Campo, M. Turunen, M. Allén, J. Ryynänen, M. Valkama, Passive intermodulation in simul-taneous transmit-receive systems: modeling and digital cancellation methods, IEEE Trans. Microw. Theory Tech. 68 (9) (2020) 3633-3652.

[10]

M.Z. Waheed, D. Korpi, A. Kiayani, L. Anttila, M. Valkama,Digital self-interference cancellation in inter-band carrier aggregation transceivers: algorithm and digital implementation perspectives, in: 2017 IEEE International Workshop on Signal Pro-cessing Systems (SiPS), 2017, pp. 1-5.

[11]

X. Miao, L. Tian, Digital cancellation scheme and hardware implementation for high-order passive intermodulation interference based on Hammerstein model, China Commun. 16 (9) (2019) 165-176.

[12]

A.Y. Kibangou, G. Favier, Wiener-Hammerstein systems modeling using diagonal Volterra kernels coefficients, IEEE Signal Process. Lett. 13 (6) (2006) 381-384.

[13]

A.Y. Kibangou, G. Favier, Toeplitz-Vandermonde matrix factorization with applica-tion to parameter estimation of Wiener-Hammerstein systems, IEEE Signal Process. Lett. 14 (2) (2007) 141-144.

[14]

V. Lampu, L. Anttila, M. Turunen, M. Fleischer, J. Hellmann, M. Valkama,Cancella-tion of air-induced passive intermodulation in FDD MIMO systems: low-complexity cascade model and measurements,in:2023 IEEE/MTT-S International Microwave Symposium-IMS 2023, 2023, pp. 33-36.

[15]

A. Ghanmi, S. Kamoun, S. Hajji,Structural estimation of Wiener-Hammerstein math-ematical models, in:2015 4th International Conference on Systems and Control (ICSC), 2015, pp. 85-90.

[16]

P. Jaraut, A. Abdelhafiz, H. Chenini, X. Hu, M. Helaoui, M. Rawat, W. Chen, N. Boulejfen, F.M. Ghannouchi, Augmented convolutional neural network for behav-ioral modeling and digital predistortion of concurrent multiband power amplifiers, IEEE Trans. Microw. Theory Tech. 69 (9) (2021) 4142-4156.

[17]

L. Schumaker, Spline Functions:Basic Theory, third ed.ed., Krieger Publishing Com-pany, Florida, 1993.

AI Summary AI Mindmap
PDF

88

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/