Adjustable random linear network coding (ARLNC): A solution for data transmission in dynamic IoT computational environments

Dilanchian Raffi , Bohlooli Ali , Jamshidi Kamal

›› 2025, Vol. 11 ›› Issue (2) : 574 -586.

PDF
›› 2025, Vol. 11 ›› Issue (2) : 574 -586. DOI: 10.1016/j.dcan.2024.04.003
Original article

Adjustable random linear network coding (ARLNC): A solution for data transmission in dynamic IoT computational environments

Author information +
History +
PDF

Abstract

In mobile computing environments, most IoT devices connected to networks experience variable error rates and possess limited bandwidth. The conventional method of retransmitting lost information during transmission, commonly used in data transmission protocols, increases transmission delay and consumes excessive bandwidth. To overcome this issue, forward error correction techniques, e.g., Random Linear Network Coding (RLNC) can be used in data transmission. The primary challenge in RLNC-based methodologies is sustaining a consistent coding ratio during data transmission, leading to notable bandwidth usage and transmission delay in dynamic network conditions. Therefore, this study proposes a new block-based RLNC strategy known as Adjustable RLNC (ARLNC), which dynamically adjusts the coding ratio and transmission window during runtime based on the estimated network error rate calculated via receiver feedback. The calculations in this approach are performed using a Galois field with the order of 256. Furthermore, we assessed ARLNC's performance by subjecting it to various error models such as Gilbert Elliott, exponential, and constant rates and compared it with the standard RLNC. The results show that dynamically adjusting the coding ratio and transmission window size based on network conditions significantly enhances network throughput and reduces total transmission delay in most scenarios. In contrast to the conventional RLNC method employing a fixed coding ratio, the presented approach has demonstrated significant enhancements, resulting in a 73% decrease in transmission delay and a 4 times augmentation in throughput. However, in dynamic computational environments, ARLNC generally incurs higher computational costs than the standard RLNC but excels in high-performance networks.

Keywords

Random linear network coding / Adjust redundancy / Galois field / Internet of Things / Data transfer

Cite this article

Download citation ▾
Dilanchian Raffi, Bohlooli Ali, Jamshidi Kamal. Adjustable random linear network coding (ARLNC): A solution for data transmission in dynamic IoT computational environments. , 2025, 11(2): 574-586 DOI:10.1016/j.dcan.2024.04.003

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Raffi Dilanchian: Writing - review & editing, Writing - original draft, Visualization, Software, Resources, Project administration, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Ali Bohlooli: Validation, Supervision, Project administration, Conceptualization. Kamal Jamshidi: Validation, Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1]

M. Zverev, P. Garrido, R. Agüero, J. Bilbao, Systematic network coding with overlap for IoT scenarios, in: 2019 International Conference on Wireless and Mobile Com-puting, Networking and Communications (WiMob), 2019, pp. 1-6.

[2]

N. Naik, Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP, in: 2017 IEEE International Systems Engineering Symposium (ISSE), IEEE, Vienna, Austria, 2017, pp. 1-7.

[3]

N. Abbas, Y. Zhang, A. Taherkordi, T. Skeie, Mobile edge computing: a survey, IEEE Int. Things J. 5 (1) (2018) 450-465.

[4]

L. Durkop, B. Czybik, J. Jasperneite,Performance evaluation of M2M protocols over cellular networks in a lab environment, in:2015 18th International Conference on Intelligence in Next Generation Networks, 2015, pp. 70-75.

[5]

R. Torre, S. Pandi, G.T. Nguyen, F.H.P. Fitzek,Optimization of a random linear network coding system with Newton method for wireless systems, in: ICC 2019-2019 IEEE International Conference on Communications (ICC), 2019, pp. 1-6.

[6]

V. Latzko, C. Vielhaus, M. Mehrabi, F.H.P. Fitzek, Analysing and learning low-latency network coding schemes, in: 2023 19th International Conference on Wire-less and Mobile Computing, Networking and Communications (WiMob), 2023, pp. 175-180.

[7]

R. Torre, C.C. Sala, S. Pandi, H. Salah, G.T. Nguyen, F.H. Fitzek,A random lin-ear network coded HARQ solution for lossy and high-jitter wireless networks, in: GLOBECOM 2020-2020 IEEE Global Communications Conference, 2020, pp. 1-6.

[8]

J. Rischke, F. Gabriel, S. Pandi, G. Nguyen, H. Salah, F.H.P. Fitzek,Improving com-munication reliability efficiently: adaptive redundancy for RLNC in SDN, in: 2019 IEEE Conference on Network Softwarization (NetSoft), 2019, pp. 291-295.

[9]

W. Yu, F. Liang, X. He, W.G. Hatcher, C. Lu, J. Lin, X. Yang, A survey on the edge computing for the Internet of Things, IEEE Access 6 (2018) 6900-6919.

[10]

S. Wunderlich, F. Gabriel, S. Pandi, F.H.P. Fitzek, M. Reisslein, Caterpillar RLNC (CRLNC): a practical finite sliding window RLNC approach, IEEE Access 5 (2017) 20183-20197.

[11]

S. Pandi, F. Gabriel, J.A. Cabrera, S. Wunderlich, M. Reisslein, F.H.P. Fitzek, PACE: redundancy engineering in RLNC for low-latency communication, IEEE Access 5 (2017) 20477-20493.

[12]

T. Ho, R. Koetter, M. Medard, D. Karger, M. Effros,The benefits of coding over routing in a randomized setting, in:IEEE International Symposium on Information Theory, 2003, Proceedings, 2003, p. 442.

[13]

T. Ho, M. Medard, R. Koetter, D. Karger, M. Effros, J. Shi, B. Leong, A random linear network coding approach to multicast, IEEE Trans. Inf. Theory 52 (10) (2006) 4413-4430.

[14]

E. Tasdemir, V. Nguyen, G.T. Nguyen, F.H.P. Fitzek, M. Reisslein, FSW: fulcrum sliding window coding for low-latency communication, IEEE Access 10 (2022) 54276-54290.

[15]

H. Kang, H. Yoo, D. Kim, Y.-S. Chung, CANCORE: context-aware network COded REpetition for VANETs, IEEE Access 5 (2017) 3504-3512.

[16]

J. Heide,Random linear network coding (RLNC)-based symbol representation, https://datatracker.ietf.org/doc/draft-heide-nwcrg-rlnc/, 2018. (Accessed 8 April 2022).

[17]

B.N. Datta, Numerical Linear Algebra and Applications, second edition, Society for Industrial and Applied Mathematics, USA, 2010.

[18]

E. Tasdemir, J.A. Cabrera, F. Gabriel, D. You, F.H.P. Fitzek, Sliding window RLNC on multi-hop communication for low latency, in: 2021 IEEE 93rd Vehicular Technology Conference ( VTC2021-Spring), 2021, pp. 1-6.

[19]

C.V. Phung, J. Dizdarevic, A. Jukan, Enhancing block-wise transfer with network coding in CoAP, arXiv : 1905.11089

[20]

[ cs 11997 2020, pp. 737-741.]

[21]

C.V. Phung, J. Dizdarevic, F. Carpio, A. Jukan, Enhancing REST HTTP with random linear network coding in dynamic edge computing environments, in: 2019 42nd In-ternational Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2019, pp. 435-440.

[22]

Y. Rivera, I. Gutiérrez, J. Márquez, R. Porto, S. Castaño, Performance dynamic cod-ing RLNC LoRa on smart cities, in: 2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILE-CON), 2021, pp. 1-7.

[23]

E. Tasdemir, M. Tömösközi, J.A. Cabrera, F. Gabriel, D. You, F.H.P. Fitzek, M. Reisslein, SpaRec: sparse systematic RLNC recoding in multi-hop networks, IEEE Access 9 (2021) 168567-168586.

[24]

F. Gabriel, S. Wunderlich, S. Pandi, F.H.P. Fitzek, M. Reisslein, Caterpillar RLNC with feedback (CRLNC-FB): reducing delay in selective repeat ARQ through coding, IEEE Access 6 (2018) 44787-44802.

[25]

M. Zverev, P. Garrido, F. Fernández, J. Bilbao, Ö. Alay, S. Ferlin, A. Brunstrom, R. Agüero, Robust QUIC: integrating practical coding in a low latency transport protocol, IEEE Access 9 (2021) 138225-138244.

[26]

A. Cohen, G. Thiran, V.B. Bracha, M. Médard, Adaptive causal network coding with feedback for multipath multi-hop communications, IEEE Trans. Commun. 69 (2) (2021) 766-785.

[27]

T. Zhu, C. Li, Y. Tang, Z. Luo, On latency reductions in vehicle-to-vehicle networks by random linear network coding, China Commun. 18 (6) (2021) 24-38.

[28]

J. Park, D.-H. Cho, Separated random linear network coding based on cooperative medium access control, IEEE Netw. Lett. 3 (2) (2021) 66-69.

[29]

J. Guo, J. Tu, Y. Wang,Multi-network transmission mechanism in narrow-band weak connection environment, in:2022 23rd Asia-Pacific Network Operations and Management Symposium (APNOMS), 2022, pp. 1-4.

[30]

H.H.F. Yin, H.W.H. Wong, M. Tahernia, J. Qing, Packet size optimization for batched network coding, in: 2022 IEEE International Symposium on Information Theory (ISIT), 2022, pp. 1584-1589.

[31]

H.H.F. Yin, H.W.H. Wong, M. Tahernia, J. Qing, Packet size optimization for batched network coding, in: 2022 IEEE International Symposium on Information Theory (ISIT), 2022, pp. 1584-1589.

[32]

J. Heide, M.V. Pedersen, F.H.P. Fitzek, T. Larsen, Network coding for mobile devices - systematic binary random rateless codes, in: 2009 IEEE International Conference on Communications Workshops, 2009, pp. 1-6.

[33]

M. Wang, B. Li, How practical is network coding?, in: 200614th IEEE International Workshop on Quality of Service, 2006, pp. 274-278.

[34]

J.E. Luzuriaga, M. Perez, P. Boronat, J.C. Cano, C. Calafate, P. Manzoni, A compar-ative evaluation of AMQP and MQTT protocols over unstable and mobile networks, in: 2015 12th Annual IEEE Consumer Communications and Networking Conference (CCNC), IEEE, Las Vegas, NV, USA, 2015, pp. 931-936.

[35]

H. Liu, H. Ma, M. El Zarki, S. Gupta, Error control schemes for networks: an overview, Mob. Netw. Appl. 2 (2) (1997) 167-182.

[36]

M. Karzand, D.J. Leith, J. Cloud, M. Médard, Design of FEC for low delay in 5G, IEEE J. Sel. Areas Commun. 35 (8) (2017) 1783-1793.

[37]

Y. Lin, B. Liang, B. Li,SlideOR: online opportunistic network coding in wireless mesh networks, in: 2010 Proceedings IEEE INFOCOM, 2010, pp. 1-5.

[38]

M.V. Pedersen, J. Heide, F.H.P. Fitzek, Kodo: an open and research oriented network coding library,in: V. Casares-Giner, P.Manzoni, A.Pont (Eds.), NETWORKING 2011 Workshops,in: Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2011, pp. 145-152.

[39]

Y.R. Julio, I.G. Garcia, J. Marquez, R-IoT: an architecture based on recoding RLNC for IoT wireless network with erase channel,in: Rocha, C.Ferrás, C.E. Mon-tenegroMarin, V.H. MedinaGarcía (InformationTechnology and Systems,Eds.), Advances in Intelligent Systems and Computing, Springer International Publishing, Cham, 2020, pp. 579-588.

[40]

E.M. Ar-Reyouchi, Y. Lamrani, I. Benchaib, S. Rattal, K. Ghoumid, NCBP: network coding based protocol for recovering lost packets in the Internet of Things,in: M. Belkasmi, J.Ben-Othman, C.Li, M.Essaaidi (Advanced Communication Systems and Information Security,Eds.), Communications in Computer and Information Science, Springer International Publishing, Cham, 2020, pp. 38-49.

[41]

G. Akilandeswary, M.L. Manickam J, Next generation network coding technique for IoT, in: 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 2020, pp. 1-6.

[42]

K. Park, W. Wang,AFEC: an adaptive forward error correction protocol for end-to-end transport of real-time traffic,in:Proceedings 7th International Conference on Computer Communications and Networks (Cat. No.98EX226), 1998, pp. 196-205.

[43]

A. Nafaa, T. Taleb, L. Murphy, Forward error correction strategies for media stream-ing over wireless networks, IEEE Commun. Mag. 46 (1) (2008) 72-79.

AI Summary AI Mindmap
PDF

486

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/