Computation and wireless resource management in 6G space-integrated-ground access networks

Ning Hui , Qian Sun , Lin Tian , Yuanyuan Wang , Yiqing Zhou

›› 2025, Vol. 11 ›› Issue (3) : 768 -777.

PDF
›› 2025, Vol. 11 ›› Issue (3) : 768 -777. DOI: 10.1016/j.dcan.2024.04.001
Original article

Computation and wireless resource management in 6G space-integrated-ground access networks

Author information +
History +
PDF

Abstract

In 6th Generation Mobile Networks (6G), the Space-Integrated-Ground (SIG) Radio Access Network (RAN) promises seamless coverage and exceptionally high Quality of Service (QoS) for diverse services. However, achieving this necessitates effective management of computation and wireless resources tailored to the requirements of various services. The heterogeneity of computation resources and interference among shared wireless resources pose significant coordination and management challenges. To solve these problems, this work provides an overview of multi-dimensional resource management in 6G SIG RAN, including computation and wireless resource. Firstly it provides with a review of current investigations on computation and wireless resource management and an analysis of existing deficiencies and challenges. Then focusing on the provided challenges, the work proposes an MEC-based computation resource management scheme and a mixed numerology-based wireless resource management scheme. Furthermore, it outlines promising future technologies, including joint model-driven and data-driven resource management technology, and blockchain-based resource management technology within the 6G SIG network. The work also highlights remaining challenges, such as reducing communication costs associated with unstable ground-to-satellite links and overcoming barriers posed by spectrum isolation. Overall, this comprehensive approach aims to pave the way for efficient and effective resource management in future 6G networks.

Keywords

Space-integrated-ground / Radio access network / MEC-based computation resource management / Mixed numerology-based wireless resource management

Cite this article

Download citation ▾
Ning Hui, Qian Sun, Lin Tian, Yuanyuan Wang, Yiqing Zhou. Computation and wireless resource management in 6G space-integrated-ground access networks. , 2025, 11(3): 768-777 DOI:10.1016/j.dcan.2024.04.001

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Ning Hui: Software, Validation, Formal analysis, Investigation, Visualization, Writing - original draft, Writing - review & editing, Conceptualization, Data curation, Methodology. Qian Sun: Project administration, Resources, Supervision, Funding acquisition. Lin Tian: Funding acquisition, Resources, Supervision, Validation. Yuanyuan Wang: Funding acquisition, Project administration, Resources, Supervision, Validation. Yiqing Zhou: Writing - review & editing, Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work is supported by the National Key Research and Development Program of China (No. 2021YFB2900504).

References

[1]

H. Yao, L. Wang, X. Wang, Z. Lu, Y. Liu, The space-terrestrial integrated network: an overview, IEEE Commun. Mag. 56 (9) (2018) 178-185.

[2]

N. Hui, Q. Sun, Y. Wang, Z. Zhang, L. Tian, C. Feng, Z. Guan,Wireless resource allocation based on multiplexing and isolation in sliced 5g networks, in: 2022 IEEE Wireless Communications and Networking Conference, IEEE, 2022, pp. 1629-1634.

[3]

Q. Sun, N. Hui, Y. Zhou, L. Tian, J. Zeng, X. Ge,How to isolate non-public networks in b5g: a review, Appl. Sci. 12 (19) (2022) 1-12.

[4]

L. Tian, L. Dai, Q. Sun, Y. Zhou, Y. Wang, C. Feng,Wireless resource management in sliced networks based on isolation indexes, in: 2021 IEEE Wireless Communications and Networking Conference, IEEE, 2021, pp. 1-6.

[5]

Q. Sun, L. Tian, Y. Zhou, J. Shi, Y. Wang, Z. Zhang,A two-layered incentive scheme for cooperation in sliced 5g d2d networks, IEEE Trans. Veh. Technol. 69 (11) (2020) 13289-13304.

[6]

G. Cui, Q. He, F. Chen, Y. Zhang, H. Jin, Y. Yang, Interference-aware game-theoretic device allocation for mobile edge computing, IEEE Trans. Mob. Comput. 21 (11) (2022) 4001-4012.

[7]

Q. Sun, L. Tian, J. Shi, Y. Zhou, L. Liu, Y. Wang, F. Wang,Joint management of communicating and computing resources in sliced 5g networks, in: 2020 IEEE Global Communications Conference, IEEE, 2020, pp. 1-6.

[8]

Q. Sun, L. Tian, Y. Zhou, Z. Zhang, Y. Peng, Y. Wang, J. Shi, Y. Ma, L. Long,Semi-dynamic computing resource allocation in mec-enabled radio access networks, in: 2019 IEEE Global Communications Conference, IEEE, 2019, pp. 1-6.

[9]

M. Tang, V.W. Wong, Deep reinforcement learning for task offloading in mobile edge computing systems, IEEE Trans. Mob. Comput. 21 (6) (2022) 1985-1997.

[10]

G. Qiao, S. Leng, K. Zhang, Y. He, Collaborative task offloading in vehicular edge multi-access networks, IEEE Commun. Mag. 56 (8) (2018) 48-54.

[11]

A. Rostami, P. Ohlen, K. Wang, Z. Ghebretensae, B. Skubic, M. Santos, A. Vidal, Orchestration of ran and transport networks for 5g: an sdn approach, IEEE Commun. Mag. 55 (4) (2017) 64-70.

[12]

T.K. Rodrigues, N. Kato,Network slicing with centralized and distributed reinforce-ment learning for combined satellite/ground networks in a 6g environment, IEEE Wirel. Commun. 29 (1) (2022) 104-110.

[13]

K. Zhu, E. Hossain,Virtualization of 5g cellular networks as a hierarchical combina-torial auction, IEEE Trans. Mob. Comput. 15 (10) (2016) 2640-2654.

[14]

L. Zhang, A. Ijaz, P. Xiao, A. Quddus, R. Tafazolli, Subband filtered multi-carrier systems for multi-service wireless communications, IEEE Trans. Wirel. Commun. 16 (3) (2017) 1893-1907.

[15]

M. Zambianco, G. Verticale,Interference minimization in 5g physical-layer network slicing, IEEE Trans. Commun. 68 (7) (2020) 4554-4564.

[16]

R.-J. Wang, C.-H. Wang, G.-S. Lee, D.-N. Yang, W.-T. Chen, J.-P. Sheu,Resource allocation in 5g with noma-based mixed numerology systems, in: 2020 IEEE Global Communications Conference, IEEE, 2020, pp. 1-6.

[17]

M. Zambianco, G. Verticale,Mixed-numerology interference-aware spectrum alloca-tion for embb and urllc network slices, in: 2021 19th Mediterranean Communication and Computer Networking Conference, IEEE, 2021, pp. 1-8.

[18]

T.-S.-L. Nguyen, S. Kallel, N. Aitsaadi, C. Adjih, I. Fajjari,A flexible numerology configuration for efficient resource allocation in 3gpp v2x 5g new radio, in: 2022 IEEE Global Communications Conference, IEEE, 2022, pp. 4449-4454.

[19]

Y.L. Lee, J. Loo, T.C. Chuah, L.-C. Wang, Dynamic network slicing for multitenant heterogeneous cloud radio access networks, IEEE Trans. Wirel. Commun. 17 (4) (2018) 2146-2161.

[20]

China-Mobile, Huawei, Tencent, China-Electric-Power-Research-Institute, Digital- Domain, Categories and Service Levels of Network Slicing White Paper, China, 2020.

[21]

Z. Zhang, W. Zhang, F.-H. Tseng, Satellite mobile edge computing: improving qos of high-speed satellite-terrestrial networks using edge computing techniques, IEEE Netw. 33 (1) (2019) 70-76.

[22]

Y. Peng, X. Tang, Y. Zhou, J. Li, Y. Qi, L. Liu, H. Lin, Computing and commu-nication cost-aware service migration enabled by transfer reinforcement learning for dynamic vehicular edge computing networks, IEEE Trans. Mob. Comput. 23 (1) (2024) 257-269.

[23]

T. Zhao, S. Zhou, L. Song, Z. Jiang, X. Guo, Z. Niu, Energy-optimal and delay-bounded computation offloading in mobile edge computing with heterogeneous clouds, China Commun. 17 (5) (2020) 191-210.

[24]

Y. Bai, L. Chen, L. Song, J. Xu, Risk-aware edge computation offloading us-ing bayesian Stackelberg game, IEEE Trans. Netw. Serv. Manag. 17 (2) (2020) 1000-1012.

[25]

S. Bi, L. Huang, H. Wang, Y.-J.A. Zhang, Lyapunov-guided deep reinforcement learn-ing for stable online computation offloading in mobile-edge computing networks, IEEE Trans. Wirel. Commun. 20 (11) (2021) 7519-7537.

[26]

Y. Qu, H. Dai, F. Wu, D. Lu, C. Dong, S. Tang, G. Chen, Robust offloading scheduling for mobile edge computing, IEEE Trans. Mob. Comput. 21 (7) (2022) 2581-2595.

[27]

T. de Cola, I. Bisio,Qos optimisation of embb services in converged 5g-satellite networks, IEEE Trans. Veh. Technol. 69 (10) (2020) 12098-12110.

[28]

C. Suzhi, W. Junyong, H. Hao, Z. Yi, Y. Shuling, Y. Lei, W. Shaojun, G. Yongsheng,Space edge cloud enabling network slicing for 5g satellite network, in: 2019 15th In-ternational Wireless Communications & Mobile Computing Conference, IEEE, 2019, pp. 787-792.

[29]

J. Wei, S. Cao,Application of edge intelligent computing in satellite Internet of things, in: 2019 IEEE International Conference on Smart Internet of Things, IEEE, 2019, pp. 85-91.

[30]

T.T. Nguyen, V.N. Ha, L.B. Le,Wireless scheduling for heterogeneous services with mixed numerology in 5g wireless networks, IEEE Commun. Lett. 24 (2) (2020) 410-413.

[31]

A. Yazar, H. Arslan,Reliability enhancement in multi-numerology-based 5g new radio using ini-aware scheduling, EURASIP J. Wirel. Commun. Netw. 2019 ( 2019) 110.

[32]

X. Zhang, L. Zhang, P. Xiao, D. Ma, J. Wei, Y. Xin, Mixed numerologies interfer-ence analysis and inter-numerology interference cancellation for windowed ofdm systems, IEEE Trans. Veh. Technol. 67 (2018) 7047-7061.

[33]

M. Yan, G. Feng, J. Zhou, Y. Sun, Y.-C. Liang,Intelligent resource scheduling for 5g radio access network slicing, IEEE Trans. Veh. Technol. 68 (8) (2019) 7691-7703.

AI Summary AI Mindmap
PDF

507

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/