Robust beamforming design for energy harvesting efficiency maximization in RIS-aided SWIPT system

Xingquan Li , Hongxia Zheng , Chunlong He , Xiaowen Tian , Xin Lin

›› 2024, Vol. 10 ›› Issue (6) : 1804 -1812.

PDF
›› 2024, Vol. 10 ›› Issue (6) :1804 -1812. DOI: 10.1016/j.dcan.2024.01.004
Research article
research-article

Robust beamforming design for energy harvesting efficiency maximization in RIS-aided SWIPT system

Author information +
History +
PDF

Abstract

This paper investigates Energy Harvesting Efficiency (EHE) maximization problems for Reconfigurable Intelligent Surface (RIS) aided Simultaneous Wireless Information and Power Transfer (SWIPT). This system focuses on the imperfect RIS-related channel and explores the robust beamforming design to maximize the EHE of all energy receivers while respecting the maximum transmit power of the Access Point (AP), RIS phase shift constraints, and maintaining a minimum signal-to-interference plus noise ratio for all information receivers under both linear and non-linear EH models. To solve these non-convex problem, the channel uncertainty related infinite constraints are approximated by using the S-procedure. With the introduction of slack variables, the transformed subproblems can be iteratively solved using alternating algorithm. Simulation results demonstrate that RIS is able to increase the system EHE.

Keywords

Energy Harvesting Efficiency (EHE) / Reconfigurable Intelligent Surface (RIS) / Simultaneous Wireless Information and Power Transfer (SWIPT) / Imperfect Channel State Information (CSI)

Cite this article

Download citation ▾
Xingquan Li, Hongxia Zheng, Chunlong He, Xiaowen Tian, Xin Lin. Robust beamforming design for energy harvesting efficiency maximization in RIS-aided SWIPT system. , 2024, 10(6): 1804-1812 DOI:10.1016/j.dcan.2024.01.004

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

E. Sisinni, A. Saifullah, S. Han, U. Jennehag, M. Gidlund, Industrial internet of things: challenges, opportunities, and directions, IEEE Trans. Ind. Inform. 14 (11)(2018) 4724-4734.

[2]

H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, M. Hoffmann, Industry 4.0, Bus. Inf. Syst. Eng. 6(4) (2014) 239-242.

[3]

W. Qin, S. Chen, M. Peng, Recent advances in industrial internet: insights and chal-lenges, Digit. Commun. Netw. 6(1) (2020) 1-13.

[4]

W. Mao, Z. Zhao, Z. Chang, G. Min, W. Gao, Energy-efficient industrial internet of things: overview and open issues, IEEE Trans. Ind. Inform. 17 (11) (2021).

[5]

G. Dileep, A survey on smart grid technologies and applications, Renew. Energy 146 (2020) 2589-2625.

[6]

S.S. Hajam, S.A. Sofi, IoT-fog architectures in smart city applications: a survey, China Commun. 18 (11) (2021) 117-140.

[7]

S. Misra, P.K. Bishoyi, S. Sarkar, I-MAC: in-body sensor MAC in wireless body area networks for healthcare IoT, IEEE Syst. J. 15 (3) (2021) 4413-4420.

[8]

B.M. Lee, H. Yang, Energy-efficient massive MIMO in massive industrial internet of things networks, IEEE Int. Things J. 9(5) (2022) 3657-3671.

[9]

W. Saad, M. Bennis, M. Chen, A vision of 6G wireless systems: applications, trends, technologies, and open research problems, IEEE Netw. 34 (3) (2020) 134-142.

[10]

L. Chettri, R. Bera, A comprehensive survey on internet of things (IoT) toward 5G wireless systems, IEEE Int. Things J. 7(1) (2020) 16-32.

[11]

C. Guo, J. Xin, L. Zhao, X. Chu, Performance analysis of cooperative NOMA with energy harvesting in multi-cell networks, China Commun. 16 (11) (2019) 120-129.

[12]

I. Krikidis, S. Timotheou, S. Nikolaou, G. Zheng, D.W.K. Ng, R. Schober, Simulta-neous wireless information and power transfer in modern communication systems, IEEE Commun. Mag. 52 (11) (2014) 104-110.

[13]

W. Lu, P. Si, G. Huang, L. Qian, N. Zhao, Y. Gong, SWIPT cooperative spectrum sharing for 6G-enabled cognitive IoT network, IEEE Int. Things J. 8 (20) (2021) 15070-15080.

[14]

P.V. Tuan, I. Koo, Optimizing efficient energy transmission on a SWIPT interference channel under linear/nonlinear EH models, IEEE Syst. J. 14 (1) (2020) 457-468.

[15]

J. Huang, C.-C. Xing, M. Guizani, Power allocation for D2D communications with SWIPT, IEEE Trans. Wirel. Commun. 19 (4) (2020) 2308-2320.

[16]

C. Pan, H. Ren, K. Wang, J. Kolb, M. Elkashlan, M. Chen, M. Renzo, Y. Hao, J. Wang, A. Swidlehurst, X. You, L. Hanzo, Reconfigurable intelligent surfaces for 6G systems: principles, applications, and research directions, IEEE Commun. Mag. 59 (6) (2021) 14-20.

[17]

C. Pan, H. Ren, K. Wang, W. Xu, M. Elkashlan, A. Nallanathan, L. Hanzo, Multicell MIMO communications relying on intelligent reflecting surface, IEEE Trans. Wirel. Commun. 119 (8) (2020) 5218-5233.

[18]

S. Hu, Z. Wei, Y. Cai, C. Liu, D.W.K. Ng, J. Yuan, Robust and secure sum-rate maxi-mization for multiuser MISO downlink systems with self-sustainable IRS, IEEE Trans. Commun. 69 (10) (2021) 7032-7049.

[19]

C. Pan, H. Ren, K. Wang, M. Elkashlan, A. Nallanathan, J. Wang, L. Hanzo, Intelli-gent reflecting surface aided MIMO broadcasting for simultaneous wireless informa-tion and power transfer, IEEE J. Sel. Areas Commun. 38 (8) (2020) 1719-1734.

[20]

K. Zhi, C. Pan, H. Ren, K.K. Chai, M. Elkashlan, Active RIS versus passive RIS: which is superior with the same power budget?, IEEE Commun. Lett. 26 (5) (2022) 1150-1154.

[21]

S. Ma, W. Shen, X. Gao, J. An, Robust channel estimation for RIS-aided millimeter-wave system with RIS blockage, IEEE Trans. Veh. Technol. 71 (5) (2022) 5621-5626.

[22]

S. Arzykulov, G. Nauryzbayev, A. Celik, A.M. Eltawil, RIS-assisted full-duplex relay systems, IEEE Syst. J. 16 (4) (2022) 5729-5740.

[23]

J. An, C. Xu, L. Gan, L. Hanzo, Low-complexity channel estimation and passive beamforming for RIS-assisted MIMO systems relying on discrete phase shifts, IEEE Trans. Commun. 70 (2) (2022) 1245-1260.

[24]

X. Peng, P. Wu, H. Tan, M. Xia, Optimization for IRS-assisted MIMO-OFDM SWIPT system with nonlinear EH model, IEEE Int. Things J. 9 (24) (2022) 25253-25268.

[25]

M. Diamanti, E.E. Tsiropoulou, S. Papavassiliou,The joint power of NOMA and re-configurable intelligent surfaces in SWIPT networks, in:Proceedings of the 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Com-munications, 2021, pp. 621-625.

[26]

H. Ren, Z. Chen, G. Hu, Z. Peng, C. Pan, J. Wang, Transmission design for active RIS-aided simultaneous wireless information and power transfer, IEEE Wirel. Commun. Lett. 12 (4) (2023) 600-604.

[27]

Q. Wu, R. Zhang, Joint active and passive beamforming optimization for intelligent reflecting surface assisted SWIPT under QoS constraints, IEEE J. Sel. Areas Commun. 38 (8) (2020) 1735-1748.

[28]

J. Liu, K. Xiong, Y. Lu, D.W.K. Ng, Z. Zhong, Z. Han, Energy efficiency in secure IRS-aided SWIPT, IEEE Wirel. Commun. Lett. 9 (11) (2020) 1884-1888.

[29]

R. Zhang, K. Xiong, Y. Lu, P. Fan, D.W.K. Ng, K.B. Letaief, Energy efficiency maxi-mization in RIS-assisted SWIPT networks with RSMA: a PPO-based approach, IEEE J. Sel. Areas Commun. 41 (5) (2023) 1413-1430.

[30]

S. Zargari, A. Khalili, R. Zhang, Energy efficiency maximization via joint active and passive beamforming design for multiuser MISO IRS-aided SWIPT, IEEE Wirel. Com-mun. Lett. 10 (3) (2021) 557-561.

[31]

D.W.K. Ng, E.S. Lo, R. Schober, Multiobjective resource allocation for secure com-munication in cognitive radio networks with wireless information and power trans-fer, IEEE Trans. Veh. Technol. 65 (5) (2016) 3166-3184.

[32]

M. Sheng, L. Wang, X. Wang, Y. Zhang, C. Xu, J. Li, Energy efficient beamform-ing in MISO heterogeneous cellular networks with wireless information and power transfer, IEEE J. Sel. Areas Commun. 34 (4) (2016) 954-968.

[33]

S. Jang, H. Lee, S. Kang, T. Oh, I. Lee, Energy efficient SWIPT systems in multi-cell MISO networks, IEEE Trans. Wirel. Commun. 17 (12) (2018) 8180-8194.

[34]

G. Zhou, C. Pan, H. Ren, K. Wang, A. Nallanathan, A framework of robust transmis-sion design for IRS-aided MISO communications with imperfect cascaded channels, IEEE Trans. Signal Process. 68 (2020) 5092-5106.

[35]

H. Zheng, C. Pan, C. Zhang, X. Li, C. He, Y. Yang, M. Dai, Robust transmission de-sign for RIS-aided wireless communication with both imperfect CSI and transceiver hardware impairments, IEEE Int. Things J. 10 (5) (2023) 4621-4635.

[36]

S. Boyd, L.G. El, E. Ferron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, Philadelphia, 1994.

[37]

Z. Szabó, Z. Biró, J. Bokor,Multivariate S-procedure, in:Proceedings of the 2013 European Control Conference, 2013, pp. 3907-3912.

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/