A framework for locating multiple RFID tags using RF hologram tensors☆,☆☆

Wang Xiangyu , Zhang Jian , Mao Shiwen , CG Periaswamy Senthilkumar , Patton Justin

›› 2025, Vol. 11 ›› Issue (2) : 337 -348.

PDF
›› 2025, Vol. 11 ›› Issue (2) : 337 -348. DOI: 10.1016/j.dcan.2023.12.004
Original article

A framework for locating multiple RFID tags using RF hologram tensors☆,☆☆

Author information +
History +
PDF

Abstract

In this paper, we present a Deep Neural Network (DNN) based framework that employs Radio Frequency (RF) hologram tensors to locate multiple Ultra-High Frequency (UHF) passive Radio-Frequency Identification (RFID) tags. The RF hologram tensor exhibits a strong relationship between observation and spatial location, helping to improve the robustness to dynamic environments and equipment. Since RFID data is often marred by noise, we implement two types of deep neural network architectures to clean up the RF hologram tensor. Leveraging the spatial relationship between tags, the deep networks effectively mitigate fake peaks in the hologram tensors resulting from multipath propagation and phase wrapping. In contrast to fingerprinting-based localization systems that use deep networks as classifiers, our deep networks in the proposed framework treat the localization task as a regression problem preserving the ambiguity between fingerprints. We also present an intuitive peak finding algorithm to obtain estimated locations using the sanitized hologram tensors. The proposed framework is implemented using commodity RFID devices, and its superior performance is validated through extensive experiments.

Keywords

Radio-frequency identification (RFID) / Ultra-high frequency (UHF) passive RFID tag / RF hologram tensor / Indoor localization / Deep learning (DL) / Swin Transformer / Self-supervised learning

Cite this article

Download citation ▾
Wang Xiangyu, Zhang Jian, Mao Shiwen, CG Periaswamy Senthilkumar, Patton Justin. A framework for locating multiple RFID tags using RF hologram tensors☆,☆☆. , 2025, 11(2): 337-348 DOI:10.1016/j.dcan.2023.12.004

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Xiangyu Wang: Data curation, Investigation, Methodology, Validation, Writing - original draft. Jian Zhang: Conceptualization. Shiwen Mao: Conceptualization, Methodology, Supervision, Writing - review & editing. Senthilkumar CG Periaswamy: Project administration. Justin Patton: Project administration.

References

[1]

C. Yang, X. Wang, S. Mao, SparseTag: high-precision backscatter indoor localization with sparse RFID tag arrays, in: Proc. IEEE SECON’19, Boston, MA, 2019, pp. 1-9.

[2]

S. Pradhan, et al., RIO: a pervasive RFID-based touch gesture interface, in: Proc. ACM MobiCom’17, New York, NY, 2017, pp. 261-274.

[3]

C. Yang, X. Wang, S. Mao, Respiration monitoring with RFID in driving environ-ments, IEEE J. Sel. Areas Commun. 39 (2) (2021) 500-512.

[4]

C. Yang, X. Wang, S. Mao, Unsupervised detection of apnea using commodity RFID tags with a recurrent variational autoencoder, IEEE Access 7 (1) (2019) 67526-67538.

[5]

C. Yang, X. Wang, S. Mao, RFID-Pose: vision-aided 3D human pose estimation with RFID, IEEE Trans. Reliab. 70 (3) (2021) 1218-1231.

[6]

C. Yang, X. Wang, S. Mao, Subject-adaptive skeleton tracking with RFID, in: Proc. the 16th IEEE International Conference on Mobility, Sensing and Networking (MSN 2020), Tokyo, Japan, 2020, pp. 599-606.

[7]

X. Wang, J. Zhang, Z. Yu, S. Mao, S. Periaswamy, J. Patton, On remote temper-ature sensing using commercial UHF RFID tags, IEEE Int. Things J. 6 (6) (2019) 10715-10727.

[8]

J. Wang, J. Xiong, X. Chen, H. Jiang, R.K. Balan, D. Fang, Simultaneous material identification and target imaging with commodity RFID devices, IEEE Trans. Mob. Comput. 20 (2) (2021) 739-753.

[9]

J. Hightower, R. Want, G. Borriello, SpotON:an indoor 3D location sensing technol-ogy based on RF signal strength, UW CSE Technical Report, 2000.

[10]

L.M. Ni, Y. Liu, Y.C. Lau, A.P. Patil, LANDMARC: indoor location sensing using active RFID, in: Proc. IEEE PerCom’03, Dallas, TX, 2003, pp. 407-415.

[11]

H. Jin, Z. Yang, S. Kumar, J.I. Hong, Towards wearable everyday body-frame track-ing using passive RFIDs, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1 (4) (2018) 145.

[12]

C. Wang, J. Liu, Y. Chen, L. Xie, H. Liu, S. Lu, RF-kinect: a wearable RFID-based approach towards 3D body movement tracking, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2 (1) (2018) 41.

[13]

X. Wang, L. Gao, S. Mao, S. Pandey, DeepFi: deep learning for indoor fingerprinting using channel state information, in: Proc. IEEE WCNC’15, New Orleans, LA, 2015, pp. 1666-1671.

[14]

X. Wang, L. Gao, S. Mao, S. Pandey, CSI-based fingerprinting for indoor localization: a deep learning approach, IEEE Trans. Veh. Technol. 66 (1) (2017) 763-776.

[15]

X. Wang, L. Gao, S. Mao, PhaseFi: phase fingerprinting for indoor localization with a deep learning approach,in:Proc. GLOBECOM’15, San Diego, CA, 2015, pp. 1-6.

[16]

X. Wang, L. Gao, S. Mao, CSI phase fingerprinting for indoor localization with a deep learning approach, IEEE Int. Things J. 3 (6) (2016) 1113-1123.

[17]

X. Wang, X. Wang, S. Mao, Indoor fingerprinting with bimodal CSI tensors: a deep residual sharing learning approach, IEEE Int. Things J. 8 (6) (2021) 4498-4513.

[18]

W. Wang, X. Wang, S. Mao, Deep convolutional neural networks for indoor localiza-tion with CSI images, IEEE Trans. Netw. Sci. Eng. 7 (1) (2020) 316-327.

[19]

J. Talvitie, E.S. Lohan, M. Renfors, The effect of coverage gaps and measurement inaccuracies in fingerprinting based indoor localization, in: Proc. IEEE ICL-GNSS’14, 2014, pp. 1-6.

[20]

S. He, S.-H.G. Chan, Wi-fi fingerprint-based indoor positioning: recent advances and comparisons, IEEE Commun. Surv. Tutor. 18 (1) (2016) 466-490.

[21]

P.V. Nikitin, R. Martinez, S. Ramamurthy, H. Leland, G. Spiess, K. Rao, Phase based spatial identification of uhf rfid tags, in: 2010 IEEE International Conference on RFID (IEEE RFID 2010), IEEE, 2010, pp. 102-109.

[22]

Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin transformer: hier-archical vision transformer using shifted windows,in:Proc. IEEE CVPR’21, Virtual Conference, 2021, pp. 10012-10022.

[23]

J. Gjengset, J. Xiong, G. McPhillips, K. Jamieson, Phaser: enabling phased array signal processing on commodity WiFi access points, in: Proc. ACM Mobicom’14, Maui, HI, 2014, pp. 153-164.

[24]

J. Xiong, K. Jamieson, Arraytrack: a fine-grained indoor location system, in: Proc. ACM NSDI’13, IL, Lombard, 2013, pp. 71-84.

[25]

Y. Xie, J. Xiong, M. Li, K. Jamieson, md-track: leveraging multi-dimensionality for passive indoor wi-fi tracking, in: Proc. ACM Mobocom’19, Los Cabos, Mexico, 2019, pp. 1-16.

[26]

M. Kotaru, K. Joshi, D. Bharadia, S. Katti, SpotFi: decimeter level localization using WiFi, in: Proc. ACM SIGCOMM’15, London, UK, 2015, pp. 269-282.

[27]

X. Li, S. Li, D. Zhang, J. Xiong, Y. Wang, H. Mei,Dynamic-music: accurate device-free indoor localization, in: Proc. ACM UbiComp 2016, Heidelberg, Germany, 2016, pp. 196-207.

[28]

P. Bahl, V.N. Padmanabhan, Radar: an in-building RF-based user location and track-ing system, in: Proc. IEEE INFOCOM’00, Tel Aviv, Israel, 2000, pp. 775-784.

[29]

J. Oh, J. Kim, Adaptive k-nearest neighbour algorithm for wifi fingerprint position-ing, Ict Express 4 (2) (2018) 91-94.

[30]

D. Li, B. Zhang, C. Li, A feature-scaling-based 𝑘-nearest neighbor algorithm for in-door positioning systems, IEEE Int. Things J. 3 (4) (2016) 590-597.

[31]

Y. Xie, Y. Wang, A. Nallanathan, L. Wang, An improved k-nearest-neighbor indoor localization method based on spearman distance, IEEE Signal Process. Lett. 23 (3) (2016) 351-355.

[32]

L. Calderoni, M. Ferrara, A. Franco, D. Maio, Indoor localization in a hospital en-vironment using random forest classifiers, Elsevier Expert Syst. Appl. 42 (1) (2015) 125-134.

[33]

X. Guo, N. Ansari, L. Li, H. Li, Indoor localization by fusing a group of fingerprints based on random forests, IEEE Int. Things J. 5 (6) (2018) 4686-4698.

[34]

Y. Zhang, D. Li, Y. Wang, An indoor passive positioning method using csi fingerprint based on adaboost, IEEE Sens. J. 19 (14) (2019) 5792-5800.

[35]

Z. Liu, D. Liu, J. Xiong, X. Yuan, A parallel adaboost method for device-free indoor localization, IEEE Sens. J. 22 (3) (2022) 2409-2418.

[36]

J.-R. Jiang, H. Subakti, H.-S. Liang, Fingerprint feature extraction for indoor local-ization, MDPI Sens. 21 (16) (2021) 5434.

[37]

J. Luo, L. Fu, A smartphone indoor localization algorithm based on wlan location fin-gerprinting with feature extraction and clustering, MDPI Sens. 17 (6) (2017) 1339.

[38]

X. Wang, L. Gao, S. Mao, S. Pandey, BiLoc: bi-modal deep learning for indoor local-ization with commodity 5 GHz WiFi, IEEE Access 5 ( 2017) 4209-4220.

[39]

X. Wang, X. Wang, S. Mao, ResLoc: deep residual sharing learning for indoor local-ization with CSI, in: Proc. IEEE PIMRC’17, Montreal, Canada, 2017, pp. 1-6.

[40]

A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet Classification with Deep Con-volutional Neural Networks, Advances in Neural Information Processing Systems, vol. 25, Curran Associates, Inc., 2012, pp. 1-9.

[41]

K. He, X. Zhang, S. Ren, J. Sun, Identity mappings in deep residual networks, in: ACM ECCV’16, Amsterdam, Nertherlands, 2016, pp. 630-645.

[42]

A. Newell, K. Yang, J. Deng, Stacked hourglass networks for human pose estimation, in: ACM ECCV’16, Amsterdam, Netherlands, 2016, pp. 483-499.

[43]

O. Ronneberger, P. Fischer, T. Brox, U-net: convolutional networks for biomedical image segmentation,in: International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 2015, pp. 234-241.

[44]

X. Li, X. Wu, Constructing long short-term memory based deep recurrent neural networks for large vocabulary speech recognition, in: Proc. IEEE ICASSP’15, South Brisbane, Australia, 2015, pp. 4520-4524.

[45]

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, I. Polosukhin, Attention is all you need, Adv. Neural Inf. Process. Syst. 30 (2017) 6000-6010.

[46]

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., An image is worth 16x 16 words: transformers for image recognition at scale, arXiv preprint, arXiv : 2010.11929.

[47]

L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, Z.-H. Jiang, F.E. Tay, J. Feng, S. Yan, Tokens-to-token vit: training vision transformers from scratch on imagenet,in:Proc. IEEE CVPR’21, Virtual Conference, 2021, pp. 558-567.

[48]

X. Wang, C. Yang, S. Mao, TensorBeat: tensor decomposition for monitoring multi-person breathing beats with commodity WiFi, ACM Trans. Intell. Syst. Technol. 9 (1) (2017) 1-27.

[49]

J. Zhang, Z. Yu, X. Wang, Y. Lyu, S. Mao, S. Periaswamy, J. Patton, X. Wang, RFHUI: an RFID based human-unmanned aerial vehicle interaction system in an indoor en-vironment, Elsevier Digit. Commun. Netw. J. 6 (1) (2020) 14-22.

[50]

L. Yang, Y. Chen, X.-Y. Li, C. Xiao, M. Li, Y. Liu, Tagoram: real-time tracking of mobile RFID tags to high precision using COTS devices, in: Proc. ACM Mobicom’14, Maui, HI, 2014, pp. 237-248.

[51]

H. Chen, Y. Zhang, W. Li, X. Tao, P. Zhang, ConFi: convolutional neural networks based indoor Wi-Fi localization using channel state information, IEEE Access 5 (1) (2017) 18066-180747.

[52]

G. Wang, C. Qian, K. Cui, X. Shi, H. Ding, W. Xi, J. Zhao, J. Han, A univer-sal method to combat multipaths for RFID sensing, in: Proc. IEEE INFOCOM’20, Toronto, Canada, 2020, pp. 277-286.

[53]

L. Shangguan, K. Jamieson, The design and implementation of a mobile RFID tag sorting robot, in: Proc. ACM MobiSys’16, Singapore, 2016, pp. 31-42.

[54]

J. Wang, D. Vasisht, D. Katabi,Rf-idraw: virtual touch screen in the air using rf signals, in: ACM SIGCOMM’14, 2014, pp. 235-246.

[55]

K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proc. IEEE CVPR’16, Las Vegas, NV, 2016, pp. 770-778.

[56]

H. Zhao, O. Gallo, I. Frosio, J. Kautz, Loss functions for image restoration with neural networks, IEEE Trans. Comput. Imaging 3 (1) (2017) 47-57.

[57]

K. He, H. Fan, Y. Wu, S. Xie, R. Girshick, Momentum contrast for unsupervised visual representation learning, in: Proc. IEEE CVPR’20, 2020, pp. 9729-9738.

[58]

K. He, X. Chen, S. Xie, Y. Li, P. Dollár, R. Girshick, Masked autoencoders are scalable vision learners, in: Proc. IEEE CVPR’22, New Orleans, LA, 2022, pp. 16000-16009.

[59]

Y. Tang, D. Yang, W. Li, H.R. Roth, B. Landman, D. Xu, V. Nath, A. Hatamizadeh, Self-supervised pre-training of swin transformers for 3d medical image analysis, in: Proc. IEEE CVPR’22, New Orleans, LA, 2022, pp. 20730-20740.

[60]

A.v.d. Oord, Y. Li, O. Vinyals, Representation learning with contrastive predictive coding, arXiv preprint arXiv : 1807.03748.

[61]

J. Zhang, X. Wang, Z. Yu, Y. Lyu, S. Mao, S.C. Periaswamy, J. Patton, X. Wang, Robust rfid based 6-dof localization for unmanned aerial vehicles, IEEE Access 7 (2019) 77348-77361.

[62]

C. Zimmermann, T. Welschehold, C. Dornhege, W. Burgard, T. Brox, 3D human pose estimation in RGBD images for robotic task learning, in: Proc. IEEE ICRA’18, Brisbane, Australia, 2018, pp. 1986-1992.

[63]

A. Hatamizadeh, V. Nath, Y. Tang, D. Yang, H. Roth, D. Xu, Swin unetr: swin trans-formers for semantic segmentation of brain tumors in mri images, arXiv preprint arXiv : 2201.01266.

AI Summary AI Mindmap
PDF

435

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/