Sparse graph neural network aided efficient decoder for polar codes under bursty interference

Zhang Shengyu , Feng Zhongxiu , Peng Zhe , Xiao Lixia , Jiang Tao

›› 2025, Vol. 11 ›› Issue (2) : 359 -364.

PDF
›› 2025, Vol. 11 ›› Issue (2) : 359 -364. DOI: 10.1016/j.dcan.2023.12.002
Original article

Sparse graph neural network aided efficient decoder for polar codes under bursty interference

Author information +
History +
PDF

Abstract

In this paper, a sparse graph neural network-aided (SGNN-aided) decoder is proposed for improving the decoding performance of polar codes under bursty interference. Firstly, a sparse factor graph is constructed using the encoding characteristic to achieve high-throughput polar decoding. To further improve the decoding performance, a residual gated bipartite graph neural network is designed for updating embedding vectors of heterogeneous nodes based on a bidirectional message passing neural network. This framework exploits gated recurrent units and residual blocks to address the gradient disappearance in deep graph recurrent neural networks. Finally, predictions are generated by feeding the embedding vectors into a readout module. Simulation results show that the proposed decoder is more robust than the existing ones in the presence of bursty interference and exhibits high universality.

Keywords

Sparse graph neural network / Polar codes / Bursty interference / Sparse factor graph / Message passing neural network

Cite this article

Download citation ▾
Zhang Shengyu, Feng Zhongxiu, Peng Zhe, Xiao Lixia, Jiang Tao. Sparse graph neural network aided efficient decoder for polar codes under bursty interference. , 2025, 11(2): 359-364 DOI:10.1016/j.dcan.2023.12.002

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Shengyu Zhang: Data curation, Methodology, Resources, Software, Writing - original draft. Zhongxiu Feng: Data curation, Formal analysis. Zhe Peng: Resources, Software. Lixia Xiao: Formal analysis, Methodology, Validation. Tao Jiang: Formal analysis, Funding acquisition, Supervision, Validation, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1]

E. Arikan, Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels, IEEE Trans. Inf. Theory 55 (7) (2009) 3051-3073.

[2]

E. Arıkan, Systematic polar coding, IEEE Commun. Lett. 15 (8) (2011) 860-862.

[3]

T. Wang, D. Qu, T. Jiang, Parity-check-concatenated polar codes, IEEE Commun. Lett. 20 (12) (2016) 2342-2345.

[4]

E. Arıkan, Polar codes: a pipelined implementation,in:Proceedings of the Interna-tional Symposium on Broadband Communication, IEEE, 2010, pp. 11-14.

[5]

I. Tal, A. Vardy, List decoding of polar codes, IEEE Trans. Inf. Theory 61 (5) (2015) 2213-2226.

[6]

H. Kim, Y. Jiang, R. Rana, S. Kannan, S. Oh, P. Viswanath,Communication al-gorithms via deep learning, in:Proceedings of the International Conference on Learning Representations, 2018, pp. 1-19.

[7]

L. Ge, Y. Guo, Y. Zhang, G. Chen, J. Wang, B. Dai, M. Li, T. Jiang, Deep neural network based channel estimation for massive mimo-ofdm systems with imperfect channel state information, IEEE Syst. J. 16 (3) (2022) 4675-4685.

[8]

S. Li, C. Ding, L. Xiao, X. Zhang, G. Liu, T. Jiang, Expectation propagation aided model driven learning for otfs signal detection, IEEE Trans. Veh. Technol. (2023) 1-6, https://doi.org/10.1109/TVT.2023.3268231.

[9]

Y. Wang, Z. Zhang, S. Zhang, S. Cao, S. Xu,A unified deep learning based polar-ldpc decoder for 5g communication systems, in:Proceedings of the International Conference on Wireless Communications and Signal Processing, 2018, pp. 1-6.

[10]

F. Liang, C. Shen, F. Wu, An iterative BP-CNN architecture for channel decoding, IEEE J. Sel. Top. Signal Process. 12 (1) (2018) 144-159.

[11]

W. Xu, X. You, C. Zhang, Y. Berery, Polar decoding on sparse graphs with deep learn-ing, in: Proceedings of the Asilomar Conference on Signals, Systems, and Computers, IEEE, 2018, pp. 599-603.

[12]

J. Gao, D. Zhang, J. Dai, K. Niu, C. Dong, ResNet-like belief-propagation decoding for polar codes, IEEE Wirel. Commun. Lett. 10 (5) (2021) 934-937.

[13]

V. Garcia Satorras, M. Welling,Neural enhanced belief propagation on factor graphs, in:Proceedings of the International Conference on Artificial Intelligence and Statis-tics, vol. 130, 2021, pp. 685-693.

[14]

S. Cammerer, J. Hoydis, F.A. Aoudia, A. Keller, Graph neural networks for chan-nel decoding, in: Proceedings of the IEEE Globecom Workshops, IEEE, 2022, pp. 486-491.

[15]

S. Cammerer, M. Ebada, A. Elkelesh, S. ten Brink, Sparse graphs for belief propaga-tion decoding of polar codes, in: Proceedings of the IEEE International Symposium on Information Theory, IEEE, 2018, pp. 1465-1469.

[16]

N. Goela, S.B. Korada, M. Gastpar, On LP decoding of polar codes, in: Proceedings of the IEEE Information Theory Workshop, IEEE, 2010, pp. 1-5.

[17]

F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner, G. Monfardini, The graph neural network model, IEEE Trans. Neural Netw. 20 (2009) 61-80.

[18]

J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, Neural Message Passing for Quantum Chemistry, Proceedings of the International Conference on Machine Learning, vol. 3, CRC Press, 2017, pp. 2053-2070.

[19]

K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2016, pp. 770-778.

[20]

Y. Li, R. Zemel, M. Brockschmidt, D. Tarlow,Gated graph sequence neural networks, in:Proceedings of the International Conference on Learning Representations, no. 1, 2016, pp. 1-20.

[21]

H.A. Safavi-Naeini, C. Ghosh, E. Visotsky, R. Ratasuk, S. Roy, Impact and mitiga-tion of narrow-band radar interference in down-link lte, in: Proceedings of the IEEE International Conference on Communications, IEEE, 2015, pp. 2644-2649.

AI Summary AI Mindmap
PDF

318

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/