PDF
Abstract
Considering the privacy challenges of secure storage and controlled flow, there is an urgent need to realize a decentralized ecosystem of private blockchain for cyberspace. A collaboration dilemma arises when the participants are self-interested and lack feedback of complete information. Traditional blockchains have similar faults, such as trustlessness, single-factor consensus, and heavily distributed ledger, preventing them from adapting to the heterogeneous and resource-constrained Internet of Things. In this paper, we develop the game-theoretic design of a two-sided rating with complete information feedback to stimulate collaborations for private blockchain. The design consists of an evolution strategy of the decision-making network and a computing power network for continuously verifiable proofs. We formulate the optimum rating and resource scheduling problems as two-stage iterative games between participants and leaders. We theoretically prove that the Stackelberg equilibrium exists and the group evolution is stable. Then, we propose a multi-stage evolution consensus with feedback on a block-accounting workload for metadata survival. To continuously validate a block, the metadata of the optimum rating, privacy, and proofs are extracted to store on a lightweight blockchain. Moreover, to increase resource utilization, surplus computing power is scheduled flexibly to enhance security by degrees. Finally, the evaluation results show the validity and efficiency of our model, thereby solving the collaboration dilemma in the private blockchain.
Keywords
Ecosystem
/
Edge computing
/
Feedback Stackelberg game
/
Private blockchain
/
Scalable computing power
Cite this article
Download citation ▾
Daoqi Han, Yang Liu, Fangwei Zhang, Yueming Lu.
Game-theoretic private blockchain design in edge computing networks.
, 2024, 10(6): 1622-1634 DOI:10.1016/j.dcan.2023.12.001
| [1] |
T. Wang, M.Z.A. Bhuiyan, G. Wang, L. Qi, J. Wu, T. Hayajneh, Preserving balance between privacy and data integrity in edge-assisted Internet of things, IEEE Int. Things J. 7(4) (2020) 2679-2689.
|
| [2] |
B.K. Mohanta, D. Jena, S. Ramasubbareddy, M. Daneshmand, A.H. Gandomi, Ad-dressing security and privacy issues of iot using blockchain technology, IEEE Int. Things J. 8(2) (2021) 881-888.
|
| [3] |
M.A. Ferrag, M. Derdour, M. Mukherjee, A. Derhab, L. Maglaras, H. Janicke, Blockchain technologies for the Internet of things: research issues and challenges, IEEE Int. Things J. 6(2) (2019) 2188-2204.
|
| [4] |
R. van Renesse, D. Dumitriu, V. Gough, C. Thomas, Efficient reconciliation and flow control for anti-entropy protocols, in: Proceedings of the 2nd Workshop on Large-Scale Distributed Systems and Middleware, LADIS’08, Association for Computing Machinery, New York, NY, USA, 2008.
|
| [5] |
J. Benet, Ipfs -content addressed, versioned, p2p file system, arXiv :1407.3561, 2014.
|
| [6] |
S. Nakamoto,Bitcoin: a peer-to-peer electronic cash system, Available online https://bitcoin.org/bitcoin.pdf. (Accessed 18 October 2020).
|
| [7] |
P. Maymounkov, D.M. Eres, Kademlia: a peer-to-peer information system based on the xor metric,in: Revised Papers from the First International Workshop on Peer-to-Peer Systems, 2002.
|
| [8] |
W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, Edge computing: vision and challenges, IEEE Int. Things J. 3(5) (2016) 637-646.
|
| [9] |
Y. Zhang, Y. Wu, H. Moustafa, D.H.K. Tsang, A. Leon-Garcia, U. Javaid, Multi-access mobile edge computing for heterogeneous iot, IEEE Commun. Mag. 56 (8) (2018) 12-13.
|
| [10] |
S. Sankaran, S. Sanju, K. Achuthan, Towards realistic energy profiling of blockchains for securing Internet of things, in: 2018 IEEE 38th International Conference on Dis-tributed Computing Systems (ICDCS), 2018, pp. 1454-1459.
|
| [11] |
Y. Liu, K. Wang, Y. Lin, W. Xu, 𝖫𝗂𝗀𝗁𝗍𝖢𝗁𝖺𝗂𝗇: a lightweight blockchain system for industrial Internet of things, IEEE Trans. Ind. Inform. 15 (6) (2019) 3571-3581.
|
| [12] |
Y. Liu, K. Wang, K. Qian, M. Du, S. Guo, Tornado: enabling blockchain in hetero-geneous Internet of things through a space-structured approach, IEEE Int. Things J. 7(2) (2020) 1273-1286.
|
| [13] |
D. Ongaro, J. Ousterhout, In search of an understandable consensus algorithm, in: USENIX, 2014, pp. 305-320.
|
| [14] |
M. Du, K. Wang, Y. Chen, X. Wang, Y. Sun, Big data privacy preserving in multi-access edge computing for heterogeneous Internet of things, IEEE Commun. Mag. 56 (8) (2018) 62-67.
|
| [15] |
C. Wang, F.R. Yu, C. Liang, Q. Chen, L. Tang, Joint computation offloading and interference management in wireless cellular networks with mobile edge computing, IEEE Trans. Veh. Technol. 66 (8) (2017) 7432-7445.
|
| [16] |
T.Q. Dinh, Q.D. La, T.Q.S. Quek, H. Shin, Learning for computation offloading in mobile edge computing, IEEE Trans. Commun. 66 (12) (2018) 6353-6367.
|
| [17] |
F. Song, L. Li, I. You, S. Yu, H. Zhang, Optimizing high-speed mobile networks with smart collaborative theory, IEEE Wirel. Commun. 29 (3) (2022) 48-54.
|
| [18] |
Y. Yan, Y. Dai, Z. Zhou, W. Jiang, S. Guo, Edge computing-based tasks offloading and block caching for mobile blockchain, Comput. Mater. Continua 62 (2) (2020) 905-915.
|
| [19] |
C. Gong, F. Lin, X. Gong, Y. Lu, Intelligent cooperative edge computing in Internet of things, IEEE Int. Things J. 7 (10) (2020) 9372-9382.
|
| [20] |
Z. Zhang, M.C.Y. Cho, C. Wang, C. Hsu, C. Chen, S. Shieh,Iot security: ongoing challenges and research opportunities, in: 2014 IEEE 7th International Conference on Service-Oriented Computing and Applications, 2014, pp. 230-234.
|
| [21] |
K. Karlsson, W. Jiang, S. Wicker, D. Adams, E. Ma, R. van Renesse, H. Weatherspoon,Vegvisir: a partition-tolerant blockchain for the Internet-of-things, in: 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), 2018, pp. 1150-1158.
|
| [22] |
V. Hassija, V. Chamola, S. Garg, D.N.G. Krishna, G. Kaddoum, D.N.K. Jayakody, A blockchain-based framework for lightweight data sharing and energy trading in v2g network, IEEE Trans. Veh. Technol. 69 (6) (2020) 5799-5812.
|
| [23] |
M. Cebe, E. Erdin, K. Akkaya, H. Aksu, S. Uluagac, Block4forensic: an integrated lightweight blockchain framework for forensics applications of connected vehicles, IEEE Commun. Mag. 56 (10) (2018) 50-57.
|
| [24] |
W. Yang, X. Dai, J. Xiao, H. Jin, Ldv: a lightweight dag-based blockchain for vehic-ular social networks, IEEE Trans. Veh. Technol. 69 (6) (2020) 5749-5759.
|
| [25] |
Y. Jiang, C. Wang, Y. Huang, S. Long, Y. Huo, A cross-chain solution to integration of iot tangle for data access management, in: 2018 IEEE International Conference on Internet of Things (IThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), 2018, pp. 1035-1041.
|
| [26] |
T. Le, M.W. Mutka, A lightweight block validation method for resource-constrained iot devices in blockchain-based applications, in: 2019 IEEE 20th International Sym-posium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), 2019, pp. 1-9.
|
| [27] |
F. Song, Y. Ma, I. You, H. Zhang, Smart collaborative evolvement for virtual group creation in customized industrial iot, IEEE Trans. Netw. Sci. Eng. (2022) 1-11.
|
| [28] |
G. Liu, H. Yang, Self-organizing network for variable clustering, Ann. Oper. Res. 263 (1-2, SI) (2018) 119-140.
|
| [29] |
S.P. Gochhayat, C. Lal, L. Sharma, D.P. Sharma, D. Gupta, J.A.M. Saucedo, U. Kose, Reliable and secure data transfer in IoT networks, Wirel. Netw. 26 (8, SI) (2020) 5689-5702.
|
| [30] |
M. Zhaofeng, W. Xiaochang, D.K. Jain, H. Khan, G. Hongmin, W. Zhen, A blockchain-based trusted data management scheme in edge computing, IEEE Trans. Ind. Inform. 16 (3) (2020) 2013-2021.
|
| [31] |
A.S. Khan, X. Zhang, S. Lambotharan, G. Zheng, B. AsSadhan, L. Hanzo, Machine learning aided blockchain assisted framework for wireless networks, IEEE Netw. 34 (5) (2020) 262-268.
|
| [32] |
D.C. Nguyen, P.N. Pathirana, M. Ding, A. Seneviratne, Privacy-preserved task of-floading in mobile blockchain with deep reinforcement learning, IEEE Trans. Netw. Serv. Manag. 17 (4) (2020) 2536-2549.
|
| [33] |
M. Singh, G.S. Aujla, A. Singh, N. Kumar, S. Garg, Deep-learning-based blockchain framework for secure software-defined industrial networks, IEEE Trans. Ind. Inform. 17 (1) (2021) 606-616.
|
| [34] |
Q. Wang, Y. Guo, X. Wang, T. Ji, L. Yu, P. Li, Ai at the edge: blockchain-empowered secure multiparty learning with heterogeneous models, IEEE Int. Things J. 7 (10)(2020) 9600-9610.
|
| [35] |
F. Song, Z. Ai, H. Zhang, I. You, S. Li, Smart collaborative balancing for dependable network components in cyber-physical systems, IEEE Trans. Ind. Inform. 17 (10)(2021) 6916-6924.
|
| [36] |
J. Lu, Y. Xin, Z. Zhang, X. Liu, K. Li, Game-theoretic design of optimal two-sided rating protocols for service exchange dilemma in crowdsourcing, IEEE Trans. Inf. Forensics Secur. 13 (11) (2018) 2801-2815.
|
| [37] |
R. Wang, F. Zeng, L. Yao, J. Wu, Game-theoretic algorithm designs and analysis for interactions among contributors in mobile crowdsourcing with word of mouth, IEEE Int. Things J. 7(9) (2020) 8271-8286.
|
| [38] |
J. Nie, J. Luo, Z. Xiong, D. Niyato, P. Wang, A Stackelberg game approach toward socially-aware incentive mechanisms for mobile crowdsensing, IEEE Trans. Wirel. Commun. 18 (1) (2019) 724-738.
|
| [39] |
J. Lu, C. Tang, X. Li, Q. Wu, Designing socially-optimal rating protocols for crowdsourcing contest dilemma, IEEE Trans. Inf. Forensics Secur. 12 (6) (2017) 1330-1344.
|
| [40] |
A.I. Chittilappilly, L. Chen, S. Amer-Yahia, A survey of general-purpose crowdsourc-ing techniques, IEEE Trans. Knowl. Data Eng. 28 (9) (2016) 2246-2266.
|
| [41] |
M. Kandori, Social norms and community enforcement, Rev. Econ. Stud. 59 (1)(1992) 63-80, https://academic.oup.com/restud/article-pdf/59/1/63/4356950/59-1-63.pdf.
|
| [42] |
Y. Xiao, M.V.D. Schaar, Socially-optimal design of service exchange platforms with imperfect monitoring, ACM Trans. Econ. Comput. 3(4) (2015) 1-25.
|
| [43] |
L.A. Adamic, J. Zhang, E. Bakshy, M.S. Ackerman, Knowledge sharing and yahoo answers: everyone knows something,in:Proceedings of the 17th International Con-ference on World Wide Web, WWW’08, Association for Computing Machinery, New York, NY, USA, 2008, pp. 665-674.
|
| [44] |
L. Mallozzi, J. Morgan, Existence of a feedback equilibrium for two-stage Stackel-berg games, IEEE Trans. Autom. Control 42 (11) (1997) 1612-1614.
|
| [45] |
D. Han, S. Wu, Z. Hu, H. Gao, E. Liu, Y. Lu, A novel classified ledger framework for data flow protection in aiot networks, Secur. Commun. Netw. 2021 (2021) 11.
|
| [46] |
D. Han, X. Du, Y. Lu, Trustworthiness and a zero leakage otmp-p2l scheme based on np problems for edge security access, Sensors 20 (8) (2020) 2231.
|
| [47] |
M.A. Ferrag, L. Shu, The performance evaluation of blockchain-based security and privacy systems for the Internet of things: a tutorial, IEEE Int. Things J. 8 (24) (2021) 17236-17260.
|