PDF
Abstract
With the rapid development of satellite communications, satellite antennas attract growing interest, especially the high-throughput SatCom-on-the-move antenna for providing high-speed connectivity in a mobile environment. While conventional antennas, such as parabolic dishes and planar waveguide arrays, enjoy a growing market, new kinds of antennas keep on emerging to meet diversified requirements in various satellite communication scenarios. This paper first introduces the design requirements, categories, and evolutions of SatCom-on-the-move antennas, and then discussed representative designs of mechanical scanning antennas and electronic scanning antennas, including their structures, principles, characteristics, and limitations in practical applications. Given the new requirements of satellite communications, this paper also highlighted some of the latest progress in this field, including the Monolithic Microwave Integrated Circuit (MMIC)-based phased array antenna, the metasurface-based phased array antenna, and their hybrid versions. Finally, some critical challenges facing future antennas are discussed. It is believed that it's necessary to put concerted efforts from antenna, microwave, and material communities, etc., to advance SatCom-on-the-move antennas for the upcoming era of satellite communication.
Keywords
Electronic scanning antenna
/
Mechanical scanning antenna
/
Metasurface-based phased array antenna
/
MMIC-based phased array antenna
/
SatCom-on-the-move antenna
Cite this article
Download citation ▾
Yuanzhi He, Fan Yang, Guodong Han, Yuanyuan Li.
High-throughput SatCom-on-the-move antennas: Technical overview and state-of-the-art.
, 2024, 10(6): 1760-1768 DOI:10.1016/j.dcan.2023.11.005
| [1] |
K. Maine, C. Devieux, P. Swan, Overview of IRIDIUM satellite network, in: Proceed-ings of WESCON’95, IEEE, 1995, p. 483.
|
| [2] |
C. Champlin, IRIDIUM satellite: a large system application of design for testa-bility, in: Proceedings of IEEE International Test Conference-(ITC), IEEE, 1993, pp. 392-398.
|
| [3] |
C.E. Fossa, R.A. Raines, G.H. Gunsch, M.A. Temple,An overview of the IRIDIUM (R) low Earth orbit (LEO) satellite system,in:Proceedings of the IEEE 1998 National Aerospace and Electronics Conference. NAECON 1998. Celebrating 50 Years (Cat. No.98CH36185), IEEE, 1998, pp. 152-159.
|
| [4] |
J.H. Huang, J. Cao, Recent development of commercial satellite communications systems, in: Artificial Intelligence in China, 2020, pp. 531-536.
|
| [5] |
Y. Henri, The OneWeb satellite system, in: Handbook of Small Satellites: Technol-ogy, Design, Manufacture, Applications, Economics and Regulation, 2020.
|
| [6] |
O.B. Osoro, E.J. Oughton, A techno-economic framework for satellite networks ap-plied to low Earth orbit constellations: assessing Starlink, OneWeb and Kuiper, IEEE Access 9 (2021) 141611-141625.
|
| [7] |
J. Alvarez, B. Walls, Constellations, clusters, and communication technology: ex-panding small satellite access to space, in: 2016 IEEE Aerospace Conference, IEEE, 2016, pp. 1-11.
|
| [8] |
W. Jun-lin, L. Chun-sheng, Development and application of INMARSAT satellite communication system, in: 2011 First International Conference on Instrumentation, Measurement, Computer, Communication and Control, IEEE, 2011, pp. 619-621.
|
| [9] |
Y. Di, Y.Z. He, H.J. Fu, Interference analysis of NGSO constellation to GEO satellite communication system based on spatio-temporal slices, IEEE Int. Things J. 10 (18)(2023) 16605-16616.
|
| [10] |
Y. Meng, L. Bian, L. Han, et al., A global navigation augmentation system based on LEO communication constellation, in: 2018 European Navigation Conference (ENC), IEEE, 2018, pp. 65-71.
|
| [11] |
Y.Z. He, Y. Li, H. Yin, Co-frequency interference analysis and avoidance between NGSO constellations: challenges, techniques, and trends, China Commun. 20 (7)(2023) 1-14.
|
| [12] |
J. Zhu, H.Y. Xing, Comparative analysis of satellite-based and ground-based light-ning detection data during 2013-2016 in China, IJMS 49 (3) (2020) 464-470.
|
| [13] |
C. McLain, S. Panthi, M. Sturza, et al., High throughput Ku-band satellites for aero-nautical applications, in: MILCOM 2012-2012 IEEE Military Communications Conference, IEEE, 2012, pp. 1-6.
|
| [14] |
Y.Z. He, X.C. Wang, Optimization design for sparse planar array in satellite commu-nications, Electronics 12 (8) (2023) 1763.
|
| [15] |
Y. Rahmat-Samii, A.C. Densmore, Technology trends and challenges of antennas for satellite communication systems, IEEE Trans. Antennas Propag. 63 (4) (2014) 1191-1204.
|
| [16] |
M. Gachev, P. Dankov, Low profile tracking ground-station antenna arrays for satel-lite communications, in: 7th Nano-Satellite Symposium, Varna, October 2016.
|
| [17] |
Y.Z. He, C.S. Ma, Analysis of the effect of antenna pointing error caused by satellite perturbation on space terahertz communication, Appl. Sci. 12 (21) (2022) 10772.
|
| [18] |
K.P. Esselle, A brief overview of antenna technologies for communications-on-the-move satellite communication mobile terminals, in: 2020 IEEE International Sym-posium on Antennas and Propagation and North American Radio Science Meeting, IEEE, 2020, pp. 1637-1638.
|
| [19] |
Q. Luo, S. Gao, Smart antennas for satellite communications on the move, in: 2017 International Workshop on Antenna Technology: Small Antennas, Innovative Struc-tures, and Applications (iWAT), IEEE, 2017, pp. 260-263.
|
| [20] |
S. Borisov, A. Shishlov, Antennas for Satcom-on-the-move, review, in: 2014 Interna-tional Conference on Engineering and Telecommunication, IEEE, 2014, pp. 3-7.
|
| [21] |
N.J.G. Fonseca, G. Toso, M. van der Vorst, et al., A review of lens-based antenna developments supported by esa for future satellite missions, in: 2018 International Symposium on Antennas and Propagation (ISAP), IEEE, 2018, pp. 1-2.
|
| [22] |
M.A. El Harmil, M. Abd Elwahab, R.A. Abdelrassoul, et al., SATCOM on-the-move antenna tracking survey, in: 2021 9th International Japan-Africa Conference on Electronics, Communications, and Computations (JAC-ECC), IEEE, 2021, pp. 26-29.
|
| [23] |
J.A. Shaw, Radiometry and the Friis transmission equation, Am. J. Phys. 81 (1)(2013) 33-37.
|
| [24] |
D.H. Johnson, Signal-to-noise ratio, Scholarpedia 1 (12) (2006) 2088.
|
| [25] |
C. Roger, Low Earth Orbit (LEO) Mobile Satellite Communications Systems, 2015, pp. 119-156.
|
| [26] |
I. Elfergani, et al., Antenna Fundamentals for Legacy Mobile Applications and Be-yond, Springer International Publishing, New York, 2018.
|
| [27] |
M. Schneider, C. Hartwanger, H. Wolf, Antennas for multiple spot beam satellites, CEAS Space J. 2(1) (2011) 59-66.
|
| [28] |
D. Venugopal, et al., Ka band satellite communication systems—applications and configurations,in:Proceedings of the International Astronautical Congress, Jerusalem, 2015.
|
| [29] |
I.D. Portillo, B.G. Cameron, E.F. Crawley, A technical comparison of three low Earth orbit satellite constellation systems to provide global broadband, Acta Astronaut. 159 (2019) 123-135.
|
| [30] |
S. Borisov, A. Shishlov, Antennas for Satcom-on-the-move, review, in: 2014 Interna-tional Conference on Engineering and Telecommunication, IEEE, 2014, pp. 3-7.
|
| [31] |
D. Ryu, et al., A design of low profile Ku band parabolic antenna using elliptical reflector shape, J. Adv. Navig. Technol. 21 (5) (2017) 466-471.
|
| [32] |
Y. Wang, A.M. Abbosh, Software-defined reconfigurable antenna using slotted sub-strate integrated waveguide for Ka-band satellite-on-the-move communication, in: 2015 International Symposium on Antennas and Propagation (ISAP), IEEE, 2015, pp. 1-3.
|
| [33] |
M. Ferrando-Rocher, et al., Circularly polarized slotted waveguide array with improved axial ratio performance, IEEE Trans. Antennas Propag. 64 (9) (2016) 4144-4148.
|
| [34] |
J.I. Herranz-Herruzo, et al., Low-cost Ka-band switchable RHCP/LHCP antenna ar-ray for mobile SATCOM terminal, IEEE Trans. Antennas Propag. 66 (5) (2018) 2661-2666.
|
| [35] |
N. Khandelwal, R.W. Jackson, Active antenna module for low-cost electroni-cally scanned phased arrays, IEEE Trans. Microw. Theory Tech. 56 (10) (2008) 2286-2292.
|
| [36] |
J.A. Ortiz, et al., Low-cost CMOS active array solution for highly dense X-band weather radar network, IEEE Trans. Antennas Propag. 68 (7) (2020) 5421-5430.
|
| [37] |
T. Cai, G.M. Wang, J.G. Liang, Y.Q. Zhuang, T.J. Li, High-performance transmis-sive meta-surface for C -/X -band lens antenna application, IEEE Trans. Antennas Propag. 65 (7) (2017) 3598-3606.
|
| [38] |
S.S. Bukhari, J. Vardaxoglou, W. Whittow, A metasurfaces review: definitions and applications, Appl. Sci. 9 (13) (2019) 2727.
|
| [39] |
J. Wang, et al., Metantenna: when metasurface meets antenna again, IEEE Trans. Antennas Propag. 68 (3) (2020) 1332-1347.
|
| [40] |
Y.F. Wang, et al. Electrical tuning of phase-change antennas and metasurfaces, Nat. Nanotechnol. 16 (6) (2021) 667-672.
|
| [41] |
L. Sengupta, S. Sengupta, Novel ferroelectric materials for phased array antennas, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44 (4) (1997) 792-797.
|
| [42] |
B. Aspe, et al., Frequency-tunable slot-loop antenna based on KNN ferroelectric in-terdigitated varactors, IEEE Antennas Wirel. Propag. Lett. 20 (8) (2021) 1414-1418.
|
| [43] |
H. Kim, J. Kim, J. Oh, Liquid-crystal-based X-band reactively loaded reflectarray unit cell to reduce reflection loss, IEEE Antennas Wirel. Propag. Lett. 20 (10) (2021) 1898-1902.
|
| [44] |
M. Wittek, C. Fritzsch, Dieter Schroth, Employing liquid crystal-based smart anten-nas for satellite and terrestrial communication, Inf. Disp. 37 (1) (2021) 17-22.
|
| [45] |
D.W. Wang, et al., Switched and steered beam end-fire antenna array fed by wide-band via-less butler matrix and tunable phase shifters based on liquid crystal tech-nology, IEEE Trans. Antennas Propag. 70 (7) (2022) 5383-5392.
|
| [46] |
R. You, W. Gao, C. Wu, H. Li, Technologies for Spacecraft Antenna Engineering Design, Springer, 2021.
|
| [47] |
S. Mercader-Pellicer, et al., Angularly stable linear-to-circular polarizing reflec-tors for multiple beam antennas, IEEE Trans. Antennas Propag. 69 (8) (2021) 4380-4389.
|
| [48] |
S.A.A. Alghurbani, L.Y. Feng, M. Wang, et al., Bidirectional dielectric resonator antenna with two reflectors, in: 2021 Cross Strait Radio Science and Wireless Tech-nology Conference (CSRSWTC), IEEE, 2021, pp. 49-51.
|
| [49] |
H. Dou, et al., One-dimensional mirrored aperture synthesis with two tilted reflec-tors, IEEE Geosci. Remote Sens. Lett. 19 (2021) 1-5.
|
| [50] |
J.M. Poyanco, et al., Two-dimensional glide-symmetric dielectric structures for pla-nar graded-index lens antennas, IEEE Antennas Wirel. Propag. Lett. 20 (11) (2021) 2171-2175.
|
| [51] |
W. Wang, N.C. Garcia, J.D. Chisum, The systematic design of non-commensurate impedance matching tapers for ultra wideband gradient-index (GRIN) lens antennas, IEEE Trans. Antennas Propag. 70 (1) (2021) 35-45.
|
| [52] |
Y.X. Cao, S. Yan, A low-profile high-gain multi-beam antenna based on 3D-printed cylindrical Luneburg lens, Microw. Opt. Technol. Lett. 63 (7) (2021) 1965-1971.
|
| [53] |
S. Yang, et al., Low-profile dual-band circularly polarized antenna combining transmitarray and reflectarray for satellite communications, IEEE Trans. Antennas Propag. 70 (7) (2022) 5983-5988.
|
| [54] |
K.X. Wang, et al., A mathematical model for sidelobe level optimization of vari-able inclination continuous transverse stub antenna, Int. J. Microw. Wirel. Technol. 14 (5) (2021) 1-6.
|
| [55] |
K.X. Wang, et al., A low-sidelobe-level variable inclination continuous transverse stub antenna with two-types stubs, in: 2021 IEEE 4th Advanced Information Man-agement, Communicates, Electronic and Automation Control Conference (IMCEC), vol. 4, 2021, pp. 1554-1558.
|
| [56] |
F. Yang, X.U. Xiangfei, X.U. Shenheng, et al., Planar array antenna with changeable beam angle, U.S. Patent 9,972,916[P], 2018-5-15.
|
| [57] |
J.L. Volakis, Antenna Engineering Handbook, McGraw Hill, 2018.
|
| [58] |
Z. Li, et al., Multi-user accessible indoor infrared optical wireless communication systems employing VIPA-based 2D optical beam-steering technique, Opt. Express 29 (13) (2021) 20175-20189.
|
| [59] |
F. Tiezzi, S. Vaccaro, D. Llorens, et al., Ku-band hybrid phased array antennas for mobile satellite communication systems, in: 2013 7th European Conference on An-tennas and Propagation (EuCAP), IEEE, 2013, pp. 1605-1608.
|
| [60] |
M. Gachev, V. Boyanov, S. Kamenopolsky, et al., On-the-move antenna systems for broad-band satellite communications, in: The 8th European Conference on Antennas and Propagation (EuCAP 2014), IEEE, 2014, pp. 2445-2449.
|
| [61] |
J.S. Herd, M.D. Conway, The evolution to modern phased array architectures, Proc. IEEE 104 (3) (2015) 519-529.
|
| [62] |
H.J. Visser, Array and Phased Array Antenna Basics, John Wiley and Sons, 2006.
|
| [63] |
R. Stevenson, M. Sazegar, A. Bily, et al., Metamaterial surface antenna technol-ogy: commercialization through diffractive metamaterials and liquid crystal display manufacturing, in: 2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS), IEEE, 2016, pp. 349-351.
|