An integrated strategy of AEF attribute evaluation for reliable thunderstorm detection

Yang Xu , Xing Hongyan , Ji Xinyuan , Su Xin , Pedrycz Witold

›› 2025, Vol. 11 ›› Issue (1) : 234 -245.

PDF
›› 2025, Vol. 11 ›› Issue (1) : 234 -245. DOI: 10.1016/j.dcan.2023.11.002
Original article

An integrated strategy of AEF attribute evaluation for reliable thunderstorm detection

Author information +
History +
PDF

Abstract

Thunderstorm detection based on the Atmospheric Electric Field (AEF) has evolved from time-domain models to space-domain models. It is especially important to evaluate and determine the particularly Weather Attribute (WA), which is directly related to the detection reliability and authenticity. In this paper, a strategy is proposed to integrate three currently competitive WA's evaluation methods. First, a conventional evaluation method based on AEF statistical indicators is selected. Subsequent evaluation approaches include competing AEF-based predicted value intervals, and AEF classification based on fuzzy c-means. Different AEF attributes contribute to a more accurate AEF classification to different degrees. The resulting dynamic weighting applied to these attributes improves the classification accuracy. Each evaluation method is applied to evaluate the WA of a particular AEF, to obtain the corresponding evaluation score. The integration in the proposed strategy takes the form of a score accumulation. Different cumulative score levels correspond to different final WA results. Thunderstorm imaging is performed to visualize thunderstorm activities using those AEFs already evaluated to exhibit thunderstorm attributes. Empirical results confirm that the proposed strategy effectively and reliably images thunderstorms, with a 100% accuracy of WA evaluation. This is the first study to design an integrated thunderstorm detection strategy from a new perspective of WA evaluation, which provides promising solutions for a more reliable and flexible thunderstorm detection.

Keywords

Atmospheric electric field (AEF) / Thunderstorm / Attribute / Fuzzy c-means / Imaging

Cite this article

Download citation ▾
Yang Xu, Xing Hongyan, Ji Xinyuan, Su Xin, Pedrycz Witold. An integrated strategy of AEF attribute evaluation for reliable thunderstorm detection. , 2025, 11(1): 234-245 DOI:10.1016/j.dcan.2023.11.002

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Xu Yang: Data curation, Formal analysis, Methodology, Software, Validation, Visualization, Writing - original draft, Writing - review & editing. Hongyan Xing: Funding acquisition, Project administration, Resources, Supervision, Writing - review & editing. Xinyuan Ji: Data curation, Investigation, Methodology, Resources, Software. Xin Su: Conceptualization, Funding acquisition, Methodology. Witold Pedrycz: Formal analysis, Funding acquisition, Project administration, Supervision, Writing - original draft.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China under Grant 62171228, in part by the National Key R&D Program of China under Grant 2021YFE0105500, and in part by the Program of China Scholarship Council under Grant 202209040027.

References

[1]

A. Rdler, P. Groenemeijer, E. Faust, R. Sausen, T. Pucik, Frequency of severe thun-derstorms across Europe expected to increase in the 21st century due to rising instability, npj Clim. Atmos. Sci. 2 (30) (2019) 1-5.

[2]

S. Ravuri, K. Lenc, M. Willson, D. Kangin, R. Lam, P. Mirowski, M. Fitzsimons, M. Athanassiadou, S. Kashem, S. Madge, R. Prudden, A. Mandhane, A. Clark, A. Brock, K. Simonyan, R. Hadsell, N. Robinson, E. Clancy, A. Arribas, S. Mohamed, Skillful precipitation nowcasting using deep generative models of radar, Nature 597 (2021) 672-677.

[3]

Y. Geng, Q. Li, T. Lin, W. Yao, A deep learning framework for lightning forecasting with multi-source spatiotemporal data, Q. J. R. Meteorol. Soc. 147 (17) (2021) 4167.

[4]

P. Wu, M. Ovchinnikov, Cloud morphology evolution in Arctic cold-air outbreak: two cases during comble period, J. Geophys. Res., Atmos. 10 (2022) 127.

[5]

Y. Li, C. Liao, Y. Wang, C. Wang, Energy-efficient optimal relay selection in cooper-ative cellular networks based on double auction, IEEE Trans. Wirel. Commun. 14 (8) (2015) 4093-4104.

[6]

K. Dimitriadou, O. Chanrion, T. Neubert, A. Protat, V. Louf, M. Heumesser, L. Hus-bjerg, C. Kohn, N. Østgaard, V. Reglero, Analysis of blue corona discharges at the top of tropical thunderstorm clouds in different phases of convection, Geophys. Res. Lett. 49 (6) (2022) e2021GL095879.

[7]

Z. Yuan, Study on the causes of rural lightning disaster and countermeasures of lightning protection and disaster reduction, J. Atmos. Sci. Res. 4 (2) (2021) 22-26.

[8]

Y. Li, H. Ma, L. Wang, S. Mao, G. Wang, Optimized content caching and user associ-ation for edge computing in densely deployed heterogeneous networks, IEEE Trans. Mob. Comput. 21 (6) (2022) 2130-2142.

[9]

S. Xia, Z. Yao, Y. Li, S. Mao, Online distributed offloading and computing re-source management with energy harvesting for heterogeneous MEC-enabled IoT, IEEE Trans. Wirel. Commun. 20 (10) (2021) 6743-6757.

[10]

X. Yang, H. Xing, W. Xu, X. Ji, A moving path tracking method of the thunderstorm cloud based on the three-dimensional atmospheric electric field apparatus, J. Sens. 9 (2021) 1-13.

[11]

X. Yang, H. Xing, A data complementary method for thunderstorm point charge localization based on atmospheric electric field apparatus array group, Digit. Com-mun. Netw. 7 (2) (2021) 170-177.

[12]

A. Fort, M. Mugnaini, V. Vignoli, S. Rocchi, F. Perini, J. Monari, M. Schiaffino, F. Fiocchi, Design, modeling, and test of a system for atmospheric electric field measurement, IEEE Trans. Instrum. Meas. 60 (8) (2011) 2778-2785.

[13]

H. Xing, X. Yang, J. Zhang, Thunderstorm cloud localization algorithm and perfor-mance analysis of a three-dimensional atmospheric electric field apparatus, J. Electr. Eng. Technol. 14 (6) (2019) 2487-2495.

[14]

G. Diniz, Y. Wada, Y. Ohira, K. Nakazawa, T. Enoto, Atmospheric electron spatial range extended by thundercloud electric field below the relativistic runaway elec-tron avalanche threshold, J. Geophys. Res., Atmos. 127 (3) (2022) 1-14.

[15]

H. Zhang, Y. Zhou, Reconstructing the electrical structure of dust storms from locally observed electric field data, Nat. Commun. 11 (1) (2020) 5072.

[16]

A. Karin, C. Vanna, B. Eric, X. Xia, Changes of electric field, aerosol, and wind covariance in different blowing dust days in West Texas, Aeolian Res. 54 (2022) 100762.

[17]

M. Abdullrahman, The possible relationship between the atmospheric electric field and high energy charged particles and the COVID-19 cases in the Central Arabian Peninsula, J. Adv. Infect. Dis. 11 (4) (2021) 395-404.

[18]

O. Rulenko, Y. Marapulets, Y. Kuzmin, A. Solodchuk, Joint perturbation in geoacous-tic emission, radon, thoron, and atmospheric electric field based on observations in Kamchatka, Izv. Phys. Solid Earth 55 (5) (2019) 766-776.

[19]

X. Yang, H. Xing, L. Zhuang, A thunderstorm cloud point charge localization method based on CEEMDAN and SG filtering, IEEE Access 9 (2021) 17049-17059.

[20]

X. Yang, H. Xing, X. Su, AI-based sound source localization system with higher accuracy, Future Gener. Comput. Syst. 141 (2023) 1-15.

[21]

X. Yang, H. Xing, X. Su, X. Ji, Entropy-based thunderstorm imaging system with real-time prediction and early warning, IEEE Trans. Instrum. Meas. (2022) 1-12.

[22]

X. Yang, H. Xing, W. Xu, X. Ji, X. Su, 3DAEFA-based thunderstorm prediction system with higher performance, IEEE Sens. J. 22 (23) (2022) 22865-22884.

[23]

G. Harnwell, S. Voorhis, An electrostatic generating voltmeter, Rev. Sci. Instrum. 4 (10) (1933) 540-541.

[24]

P. Kirkpatrick, I. Miyake, A generating voltmeter for the measurement of high po-tentials, Rev. Sci. Instrum. 3 (1) (1932) 1-8.

[25]

D. Malan, B. Schonland,The electrical processes in the intervals between the strokes of a lightning discharge, Proc. R. Soc. Lond. 206 (1085) (1951) 145-163.

[26]

H. Xing, Q. Zhang, W. Xu, X. Ji, Altitude correction method and networking for atmospheric electric field data, J. PLA Univ. Sci. Technol. (Nat. Sci. Ed.) 15 (6) (2014) 591-597.

[27]

X. Ji, H. Xing, W. Xu, The relation of three dimension atmospheric electric field and thundercloud charge position, Insul. Surge Arresters 6 (2015) 63-68.

[28]

M. Ravichandran, A. Kamra, Spherical field meter to measure the electric field vector-measurements in fair weather and inside a dust devil, Rev. Sci. Instrum. 4 (1999) 2140-2149.

[29]

X. Wen, C. Peng, D. Fang, P. Yang, S. Xia, Measuring method of three dimensional atmospheric electric field based on coplanar decoupling structure, J. Electron. Inf. Technol. 36 (10) (2014) 2504-2508.

[30]

W. Xu, C. Zhang, X. Ji, H. Xing, Inversion of a thunderstorm cloud charging model based on a 3D atmospheric electric field, Appl. Sci. 8 (12) (2018) 2642.

[31]

H. Xing, G. He, X. Ji, Analysis on electric field based on three dimensional atmo-spheric electric field apparatus, J. Electr. Eng. Technol. 4 (2018) 1696-1703.

[32]

M. Ferro, J. Yamasaki, D. Pimentel, K. Naccarato, Lightning risk warnings based on atmospheric electric field measurements in Brazil, J. Aerosp. Technol. Manag. 3 (3) (2012) 03032511.

[33]

D. Aranguren, J. Montanya, G. Sola, V. March, D. Romero, H. Torres, On the lighting hazard warning using electrostatic field: analysis of summer thunderstorms in Spain, J. Electrost. 67 (2-3) (2009) 507-512.

[34]

R. Chai, Z. Wang, W. Xiao, Z. Yang, H. Zhang, Application of atmospheric electric field data in lightning warning, Meteorol. Sci. Technol. 37 (6) (2009) 724-728.

[35]

A. Mostajabi, D. Finney, M. Rubinstein, F. Rachidi, Nowcasting lightning occurrence from commonly available meteorological parameters using machine learning tech-niques, npj Clim. Atmos. Sci. 2 (41) (2019) 1-15.

[36]

M. Arul, A. Kareem, M. Burlando, G. Solari, Machine learning based automated identification of thunderstorms from anemometric records using shapelet transform, J. Wind Eng. Ind. Aerodyn. 220 (2022) 104856.

[37]

W. Xu, Z. Xia, H. Xing, A lightning warning method based on EEMD and XGBoost, Chin. J. Sci. Instrum. 41 (2020) 235-243.

[38]

X. Yang, H. Xing, X. Ji, T. Huang, C. Zhou, W. Yin, X. Su, W. Pedrycz, 3DAEF-based thunderstorm multipath imaging system, IEEE Sens. J. (2023) 1-18.

[39]

A. Javadpour, N. Adelpour, G. Wang, T. Peng, Combing fuzzy clustering and PSO algorithms to optimize energy consumption in WSN networks, in: IEEE Conference on SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI, IEEE, 2018.

[40]

Q. Liu, Y. Peng, S. Pei, J. Wu, T. Peng, G. Wang, Prime inner product encoding for effective wildcard-based multi-keyword fuzzy search, IEEE Trans. Serv. Comput. 15 (4) (2022) 1799-1812.

[41]

Q. Liu, Y. Peng, J. Wu, T. Wang, G. Wang, Secure multi-keyword fuzzy searches with enhanced service quality in cloud computing, IEEE Trans. Netw. Serv. Manag. 18 (2) (2021) 2046-2062.

[42]

T. Vandarkuzhali, C. Ravichandran, Detection of fovea region in retinal images using optimisation-based modified FCM and ARMD disease classification with SVM, Int. J. Biomed. Eng. Technol. 32 (1) (2020) 83-107.

[43]

J. Wen, J. Yang, T. Wang, Y. Li, Z. Lv, Energy-efficient task allocation for reliable parallel computation of cluster-based wireless sensor network in edge computing, Digit. Commun. Netw. (2022) 1-11.

[44]

D. Zhao, H. Xing, H. Wang, H. Zhang, X. Liang, H. Li, Seasurface small target detec-tion based on four features extracted by FAST algorithm, J. Mar. Sci. Eng. 11 (2023) 1-15.

[45]

D. Mishra, B. Naik, J. Nayak, A. Souri, P. Dash, S. Vimal, Light gradient boosting machine with optimized hyperparameters for identification of malicious access in IoT network, Digit. Commun. Netw. 9 (1) (2023) 125-137.

[46]

G. Feng, W. Lu, W. Pedrycz, J. Yang, X. Liu, The learning of fuzzy cognitive maps with noisy data: a rapid and robust learning method with maximum entropy, IEEE Trans. Cybern. 51 (4) (2021) 2080-2092.

[47]

Z. Han, W. Pedrycz, J. Zhao, W. Wang, Hierarchical granular computing-based model and its reinforcement structural learning for construction of long-term pre-diction intervals, IEEE Trans. Cybern. 52 (1) (2022) 666-676.

[48]

H. Lin, Q. Xue, J. Feng, D. Bai, Internet of things intrusion detection model and algorithm based on cloud computing and multi-feature extraction extreme learning machine, Digit. Commun. Netw. 9 (1) (2023) 111-124.

[49]

C. Yang, S. Oh, W. Pedrycz, Z. Fu, B. Yang, Design of reinforced fuzzy radial basis function neural network classifier driven with the aid of iterative learning tech-niques and support vector-based clustering, IEEE Trans. Fuzzy Syst. 29 (9) (2020) 2506-2520.

[50]

S. Roh, S. Oh, W. Pedrycz, Z. Wang, Z. Fu, K. Seo, Design of iterative fuzzy radial basis function neural networks based on iterative weighted fuzzy c-means clustering and weighted LSE estimation, IEEE Trans. Fuzzy Syst. 30 (10) (2022) 4273-4285.

[51]

A. Paul, S. Maity, Kernel fuzzy c-means clustering on energy detection based coop-erative spectrum sensing, Digit. Commun. Netw. 2 (4) (2016) 196-205.

[52]

H. Guo, L. Wang, X. Liu, W. Pedrycz, Information granulation-based fuzzy clustering of time series, IEEE Trans. Cybern. 51 (12) (2021) 6253-6261.

AI Summary AI Mindmap
PDF

271

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/