A game incentive mechanism for energy efficient federated learning in computing power networks

Xiao Lin , Ruolin Wu , Haibo Mei , Kun Yang

›› 2024, Vol. 10 ›› Issue (6) : 1741 -1747.

PDF
›› 2024, Vol. 10 ›› Issue (6) :1741 -1747. DOI: 10.1016/j.dcan.2023.10.006
Research article
research-article

A game incentive mechanism for energy efficient federated learning in computing power networks

Author information +
History +
PDF

Abstract

Computing Power Network (CPN) is emerging as one of the important research interests in beyond 5G (B5G) or 6G. This paper constructs a CPN based on Federated Learning (FL), where all Multi-access Edge Computing (MEC) servers are linked to a computing power center via wireless links. Through this FL procedure, each MEC server in CPN can independently train the learning models using localized data, thus preserving data privacy. However, it is challenging to motivate MEC servers to participate in the FL process in an efficient way and difficult to ensure energy efficiency for MEC servers. To address these issues, we first introduce an incentive mechanism using the Stackelberg game framework to motivate MEC servers. Afterwards, we formulate a comprehensive algorithm to jointly optimize the communication resource (wireless bandwidth and transmission power) allocations and the computation resource (computation capacity of MEC servers) allocations while ensuring the local accuracy of the training of each MEC server. The numerical data validates that the proposed incentive mechanism and joint optimization algorithm do improve the energy efficiency and performance of the considered CPN.

Keywords

Computing power network / Federated learning / Energy efficiency / Stackelberg game / Resource allocation

Cite this article

Download citation ▾
Xiao Lin, Ruolin Wu, Haibo Mei, Kun Yang. A game incentive mechanism for energy efficient federated learning in computing power networks. , 2024, 10(6): 1741-1747 DOI:10.1016/j.dcan.2023.10.006

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

W. Jiang, B. Han, M.A. Habibi, H.D. Schotten, The road towards 6g: a comprehensive survey, IEEE Open J. Commun. Soc. 2 (2021) 334-366.

[2]

D.C. Nguyen, M. Ding, P.N. Pathirana, A. Seneviratne, J. Li, D. Niyato, O. Dobre, H. V. Poor, 6g Internet of things: a comprehensive survey, IEEE Int. Things J. 9(1)(2022) 359-383.

[3]

M.Z. Chowdhury, M. Shahjalal, S. Ahmed, Y.M. Jang, 6g wireless communication systems: applications, requirements, technologies, challenges, and research direc-tions, IEEE Open J. Commun. Soc. 1 (2020) 957-975.

[4]

Y. Mao, C. You, J. Zhang, K. Huang, K.B. Letaief, A survey on mobile edge com-puting: the communication perspective, IEEE Commun. Surv. Tutor. 19 (4) (2017) 2322-2358.

[5]

K. Wang, K. Yang, H.-H. Chen, L. Zhang, Computation diversity in emerging net-working paradigms, IEEE Wirel. Commun. 24 (1) (2017) 88-94.

[6]

K. Wang, K. Yang, C.S. Magurawalage, Joint energy minimization and resource allo-cation in c-ran with mobile cloud, IEEE Trans. Cloud Comput. 6(3) (2018) 760-770.

[7]

H. Mei, K. Yang, Q. Liu, K. Wang, Joint trajectory-resource optimization in uav-enabled edge-cloud system with virtualized mobile clone, IEEE Int. Things J. 7(7)(2020) 5906-5921.

[8]

X. Tang, C. Cao, Y. Wang, S. Zhang, Y. Liu, M. Li, T. He, Computing power network: the architecture of convergence of computing and networking towards 6g require-ment, China Commun. 18 (2) (2021) 175-185.

[9]

J. Liu, Y. Sun, J. Su, Z. Li, X. Zhang, B. Lei, W. Wang,Computing power network: a testbed and applications with edge intelligence, in: IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2022, pp. 1-2.

[10]

S. Lan, J. Huang,Brief analysis for network security issues in computing power net-work, in:Emerging Networking Architecture and Technologies: First International Conference, ICENAT 2022, Shenzhen, China, November 15-17, 2022, Proceedings, Springer, 2023, pp. 298-311.

[11]

X. Huang, B. Lei, G. Ji, M. Wei, Y. Zhang, Q. Shen,Multi-agent deep reinforcement learning-based incentive mechanism for computing power network, in:Emerging Networking Architecture and Technologies: First International Conference, ICENAT 2022, Shenzhen, China, November 15-17, 2022, Proceedings, Springer, November 2022, pp. 38-49.

[12]

K. Cheng, Y. Teng, W. Sun, A. Liu, X. Wang, Energy-efficient joint offloading and wireless resource allocation strategy in multi-mec server systems, in: 2018 IEEE International Conference on Communications (ICC), IEEE, 2018, pp. 1-6.

[13]

Y. Sun, J. Liu, H. Huang, B. Lei, J. Peng, W. Wang, Computing power network: a survey, in: China Communications, 2022, available online at: arXiv :2210.06080.

[14]

B. McMahan, E. Moore, D. Ramage, S. Hampson, B.A. y Arcas, Communication-efficient learning of deep networks from decentralized data, in: Artificial Intelligence and Statistics, PMLR, 2017, pp. 1273-1282.

[15]

X. Mo, J. Xu, Energy-efficient federated edge learning with joint communication and computation design, J. Commun. Inf. Netw. 6(2) (2021) 110-124.

[16]

Z. Yang, M. Chen, W. Saad, C.S. Hong, M. Shikh-Bahaei, Energy efficient federated learning over wireless communication networks, IEEE Trans. Wirel. Commun. 20 (3)(2021) 1935-1949.

[17]

M.S. Al-Abiad, M.Z. Hassan, M.J. Hossain, Energy-efficient resource allocation for federated learning in noma-enabled and relay-assisted Internet of things networks, IEEE Int. Things J. 9 (24) (2022) 24736-24753.

[18]

X. Zhou, J. Zhao, H. Han, C. Guet, Joint optimization of energy consumption and completion time in federated learning, in: 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS), 2022, pp. 1005-1017.

[19]

T. Zhou, X. Li, C. Pan, M. Zhou, Y. Yao, Multi-server federated edge learning for low power consumption wireless resource allocation based on user qoe, J. Commun. Netw. 23 (6) (2021) 463-472.

[20]

C.W. Zaw, C.S. Hong, A decentralized game theoretic approach for energy-aware resource management in federated learning, in: 2021 IEEE International Conference on Big Data and Smart Computing (BigComp), 2021, pp. 133-136.

[21]

Q. Wang, Y. Xiao, H. Zhu, Z. Sun, Y. Li, X. Ge, Towards energy-efficient federated edge intelligence for iot networks, in: 2021 IEEE 41st International Conference on Distributed Computing Systems Workshops (ICDCSW), 2021, pp. 55-62.

[22]

J. Kang, Z. Xiong, D. Niyato, H. Yu, Y.-C. Liang, D.I. Kim,Incentive design for efficient federated learning in mobile networks: a contract theory approach, in: 2019 IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS), 2019, pp. 1-5.

[23]

G. Xiao, M. Xiao, G. Gao, S. Zhang, H. Zhao, X. Zou,Incentive mechanism de-sign for federated learning: a two-stage Stackelberg game approach, in: 2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS), 2020, pp. 148-155.

[24]

J. Lee, D. Kim, D. Niyato, Market analysis of distributed learning resource manage-ment for Internet of things: a game-theoretic approach, IEEE Int. Things J. 7(9)(2020) 8430-8439.

[25]

Z. Wang, Q. Hu, R. Li, M. Xu, Z. Xiong, Incentive mechanism design for joint resource allocation in blockchain-based federated learning, IEEE Trans. Parallel Distrib. Syst. 34 (5) (2023) 1536-1547.

[26]

L.U. Khan, S.R. Pandey, N.H. Tran, W. Saad, Z. Han, M.N.H. Nguyen, C.S. Hong, Fed-erated learning for edge networks: resource optimization and incentive mechanism, IEEE Commun. Mag. 58 (10) (2020) 88-93.

[27]

Y. Zhu, D. Hu, B. Qian, K. Yu, T. Liu, H. Zhou, A Stackelberg game and federated learning assisted spectrum sharing framework for iov, in: 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), 2022, pp. 1-6.

[28]

J. Liu, G. Zhang, K. Wang, K. Yang, Task-load-aware game-theoretic framework for wireless federated learning, IEEE Commun. Lett. 27 (1) (2023) 268-272.

[29]

T.H. Thi Le, N.H. Tran, Y.K. Tun, M.N.H. Nguyen, S.R. Pandey, Z. Han, C.S. Hong, An incentive mechanism for federated learning in wireless cellular networks: an auction approach, IEEE Trans. Wirel. Commun. 20 (8) (2021) 4874-4887.

[30]

Y. Zhan, P. Li, S. Guo, Z. Qu, Incentive mechanism design for federated learning: challenges and opportunities, IEEE Netw. 35 (4) (2021) 310-317.

[31]

C. Ma, J. Konečny, M. Jaggi, V. Smith, M.I. Jordan, P. Richtárik, M. Takáč, Dis-tributed optimization with arbitrary local solvers, Optim. Methods Softw. 32 (4)(2017) 813-848.

[32]

S.R. Pandey, N.H. Tran, M. Bennis, Y.K. Tun, Z. Han, C.S. Hong, Incentivize to build: a crowdsourcing framework for federated learning, in: 2019 IEEE Global Communi-cations Conference (GLOBECOM), IEEE, 2019, pp. 1-6.

[33]

J. Lu, R. Mottaghi, A. Kembhavi, et al. Container: context aggregation networks, Adv. Neural Inf. Process., Syst. 34 (2021) 19160-19171.

AI Summary AI Mindmap
PDF

170

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/