Outage analysis of aerial semi-grant-free NOMA systems

Hongjiang Lei , Chen Zhu , Ki-Hong Park , Imran Shafique Ansari , Weijia Lei , Hong Tang , Kyeong Jin Kim

›› 2024, Vol. 10 ›› Issue (5) : 1529 -1541.

PDF
›› 2024, Vol. 10 ›› Issue (5) :1529 -1541. DOI: 10.1016/j.dcan.2023.10.001
Research article
research-article

Outage analysis of aerial semi-grant-free NOMA systems

Author information +
History +
PDF

Abstract

In this paper, we analyze the outage performance of Unmanned Aerial Vehicles (UAVs)-enabled downlink Non-Orthogonal Multiple Access (NOMA) communication systems with the Semi-Grant-Free (SGF) transmission scheme. A UAV provides coverage services for a Grant-Based (GB) user and one Grant-Free (GF) user is allowed to utilize the same channel resource opportunistically. The analytical expressions for the exact and asymptotic Outage Probability (OP) of the GF user are derived. The results demonstrate that no-zero diversity order can be achieved only under stringent conditions on users' quality of service requirements. Subsequently, an efficient Dynamic Power Allocation (DPA) scheme is proposed to relax such data rate constraints. The analytical expressions for the exact and asymptotic OP of the GF user with the DPA scheme are derived. Finally, Monte Carlo simulation results are presented to validate the correctness of the derived analytical expressions and demonstrate the effects of the UAV's location and altitude on the OP of the GF user.

Keywords

Unmanned aerial vehicle / Non-orthogonal multiple access / Semi-grant-free / Outage probability

Cite this article

Download citation ▾
Hongjiang Lei, Chen Zhu, Ki-Hong Park, Imran Shafique Ansari, Weijia Lei, Hong Tang, Kyeong Jin Kim. Outage analysis of aerial semi-grant-free NOMA systems. , 2024, 10(5): 1529-1541 DOI:10.1016/j.dcan.2023.10.001

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Q. Wu, J. Xu, Y. Zeng, D.W.K. Ng, N. Al-Dhahir, R. Schober, A.L. Swindlehurst, A comprehensive overview on 5G-and-beyond networks with UAVs: from commu-nications to sensing and intelligence, IEEE J. Sel. Areas Commun. 39 (10) (2021) 2912-2945.

[2]

Y. Liu, Z. Qin, Y. Cai, Y. Gao, G.Y. Li, A. Nallanathan, UAV communications based on non-orthogonal multiple access, IEEE Wirel. Commun. 26 (1) (2019) 52-57.

[3]

Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, I. Chih-Lin, H.V. Poor, Application of non-orthogonal multiple access in LTE and 5G networks, IEEE Commun. Mag. 55 (2) (2017) 185-191.

[4]

T. Hou, Y. Liu, Z. Song, X. Sun, Y. Chen, Multiple antenna aided NOMA in UAV networks: a stochastic geometry approach, IEEE Trans. Commun. 67 (2) (2019) 1031-1044.

[5]

T. Hou, Y. Liu, Z. Song, X. Sun, Y. Chen, UAV-to-everything (U2X) networks relying on NOMA: a stochastic geometry model, IEEE Trans. Veh. Technol. 69 (7) (2020) 7558-7568.

[6]

T. Hou, Y. Liu, Z. Song, X. Sun, Y. Chen, Exploiting NOMA for UAV communications in large-scale cellular networks, IEEE Trans. Commun. 67 (10) (2019) 6897-6911.

[7]

T. Hou, Y. Liu, Z. Song, X. Sun, Y. Chen, NOMA-enhanced terrestrial and aerial IoT networks with partial CSI, IEEE Int. Things J. 7(4) (2020) 3254-3266.

[8]

W.U. Khan, N. Imtiaz, I. Ullah, Joint optimization of NOMA-enabled backscatter communications for beyond 5G IoT networks, Internet Technol. Lett. 4(2) (2021) e265.

[9]

N. Zhao, X. Pang, Z. Li, Y. Chen, F. Li, Z. Ding, M.-S. Alouini, Joint trajectory and precoding optimization for UAV-assisted NOMA networks, IEEE Trans. Commun. 67 (5) (2019) 3723-3735.

[10]

D. Zhai, H. Li, X. Tang, R. Zhang, Z. Ding, F.R. Yu, Height optimization and resource allocation for NOMA enhanced UAV-aided relay networks, IEEE Trans. Commun. 69 (2) (2021) 962-975.

[11]

H. Zhang, J. Zhang, K. Long, Energy efficiency optimization for NOMA UAV network with imperfect CSI, IEEE J. Sel. Areas Commun. 38 (12) (2020) 2798-2809.

[12]

W. Wang, N. Zhao, L. Chen, X. Liu, Y. Chen, D. Niyato, UAV-assisted time-efficient data collection via uplink NOMA, IEEE Trans. Commun. 69 (11) (2021) 7851-7863.

[13]

M. Liu, G. Gui, N. Zhao, J. Sun, H. Gacanin, H. Sari, UAV-aided air-to-ground coop-erative nonorthogonal multiple access, IEEE Int. Things J. 7(4) (2020) 2704-2715.

[14]

M. Shirvanimoghaddam, M. Dohler, S.J. Johnson, Massive non-orthogonal multiple access for cellular IoT: potentials and limitations, IEEE Commun. Mag. 55 (9) (2017) 55-61.

[15]

D. Park, H. Seo, H. Kwon, B.G. Lee, Wireless packet scheduling based on the cumu-lative distribution function of user transmission rates, IEEE Trans. Commun. 53 (11)(2005) 1919-1929.

[16]

Z. Ding, R. Schober, H.V. Poor, A new QoS-guarantee strategy for NOMA assisted semi-grant-free transmission, IEEE Trans. Commun. 69 (11) (2021) 7489-7503.

[17]

Y. Sun, Z. Ding, X. Dai, A new design of hybrid SIC for improving transmission robustness in uplink NOMA, IEEE Trans. Veh. Technol. 70 (5) (2021) 5083-5087.

[18]

Z. Yang, P. Xu, J. Ahmed Hussein, Y. Wu, Z. Ding, P. Fan, Adaptive power allocation for uplink non-orthogonal multiple access with semi-grant-free transmission, IEEE Wirel. Commun. Lett. 9 (10) (2020) 1725-1729.

[19]

H. Lu, X. Xie, Z. Shi, H. Lei, H. Yang, J. Cai, Advanced NOMA assisted semi-grant-free transmission schemes for randomly distributed users, IEEE Trans. Wirel. Commun. 22 (7) (2023) 4638-4653.

[20]

C. Zhang, Y. Liu, Z. Ding, Semi-grant-free NOMA: a stochastic geometry model, IEEE Trans. Wirel. Commun. 21 (2) (2022) 1197-1213.

[21]

C. Zhang, Y. Liu, W. Yi, Z. Qin, Z. Ding, Semi-grant-free NOMA: ergodic rates analy-sis with random deployed users, IEEE Wirel. Commun. Lett. 10 (4) (2021) 692-695.

[22]

H. Lei, F. Yang, H. Liu, I. Shafique Ansari, K.J. Kim, T.A. Tsiftsis, On secure NOMA-aided semi-grant-free systems, IEEE Trans. Wirel. Commun. 23 (1) (2024) 74-90.

[23]

J. Chen, L. Guo, J. Jia, J. Shang, X. Wang, Resource allocation for IRS assisted SGF NOMA transmission: a MADRL approach, IEEE J. Sel. Areas Commun. 40 (4) (2022) 1302-1316.

[24]

X. Yue, Z. Qin, Y. Liu, S. Kang, Y. Chen, A unified framework for non-orthogonal multiple access, IEEE Trans. Commun. 66 (11) (2018) 5346-5359.

[25]

X. Yue, Y. Liu, Y. Yao, X. Li, R. Liu, A. Nallanathan, Secure communications in a unified non-orthogonal multiple access framework, IEEE Trans. Wirel. Commun. 19 (3) (2020) 2163-2178.

[26]

M. Vaezi, R. Schober, Z. Ding, H.V. Poor, Non-orthogonal multiple access: common myths and critical questions, IEEE Wirel. Commun. 26 (5) (2019) 174-180.

[27]

Y. Zhou, P.L. Yeoh, H. Chen, Y. Li, R. Schober, L. Zhuo, B. Vucetic, Improving phys-ical layer security via a UAV friendly jammer for unknown eavesdropper location, IEEE Trans. Veh. Technol. 67 (11) (2018) 11280-11284.

[28]

A. Al-Hourani, S. Kandeepan, S. Lardner, Optimal LAP altitude for maximum cover-age, IEEE Wirel. Commun. Lett. 3(6) (2014) 569-572.

[29]

M. Azari, F. Rosas, K.-C. Chen, S. Pollin, Ultra reliable UAV communication using altitude and cooperation diversity, IEEE Trans. Commun. 66 (1) (2018) 330-344.

[30]

I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Products, 7th, Academic Press, San Diego, CA, 2007.

[31]

M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 7th, Dover Press, New York, NY, USA, 1972.

AI Summary AI Mindmap
PDF

78

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/