Joint user association and resource allocation for cost-efficient NOMA-enabled F-RANs

Yuan Ai , Chenxi Liu , Mugen Peng

›› 2024, Vol. 10 ›› Issue (6) : 1686 -1697.

PDF
›› 2024, Vol. 10 ›› Issue (6) :1686 -1697. DOI: 10.1016/j.dcan.2023.08.001
Research article
research-article

Joint user association and resource allocation for cost-efficient NOMA-enabled F-RANs

Author information +
History +
PDF

Abstract

Integrating Non-Orthogonal Multiple Access (NOMA) into Fog Radio Access Networks (F-RANs) has shown to be effective in boosting the spectral efficiency, energy efficiency, connectivity, and reducing the latency, thus attracting significant research attention. However, the performance improvement of the NOMA-enabled F-RANs is at the cost of computational overheads, which are commonly neglected in their design and deployment. To address this issue, in this paper, we propose a hybrid dynamic downlink framework for NOMA-enabled F-RANs. In this framework, we first develop a novel network utility function, which takes both the network throughput and computational overheads into consideration, thus enabling us to comprehensively evaluate the performance of different access schemes for F-RANs. Based on the developed network utility function, we further formulate a network utility maximization problem, subject to practical constraints on the decoding order, power allocation, and quality-of-service. To solve this NP-hard problem, we decompose it into two subproblems, namely, a user equipment association and subchannel assignment subproblem and a power allocation subproblem. Three-dimensional matching and sequential convex programming-based algorithms are designed to solve these two subproblems, respectively. Through numerical results, we show how our proposed algorithms can achieve a good balance between the network throughput and computational overheads by judiciously adjusting the maximum transmit power of fog access points. We also show that the proposed NOMA-enabled F-RAN framework can increase, by up to 89%, the network utility, compared to OMA-based F-RANs.

Keywords

Non-orthogonal multiple access (NOMA) / Resource allocation / Fog radio access networks

Cite this article

Download citation ▾
Yuan Ai, Chenxi Liu, Mugen Peng. Joint user association and resource allocation for cost-efficient NOMA-enabled F-RANs. , 2024, 10(6): 1686-1697 DOI:10.1016/j.dcan.2023.08.001

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

W. Saad, M. Bennis, M. Chen, A vision of 6g wireless systems: applications, trends, technologies, and open research problems, IEEE Netw. 34 (3) (2019) 134-142.

[2]

I.A. Alimi, A.L. Teixeira, P.P. Monteiro, Toward an efficient c-ran optical fronthaul for the future networks: a tutorial on technologies, requirements, challenges, and solutions, IEEE Commun. Surv. Tutor. 20 (1) (2017) 708-769.

[3]

Y. Ai, M. Peng, K. Zhang, Edge computing technologies for internet of things: a primer, Digital Commun. Netw. 4(2) (2018) 77-86.

[4]

Y. Ai, G. Qiu, C. Liu, Y. Sun, Joint resource allocation and admission control in sliced fog radio access networks, China Commun. 17 (8) (2020) 14-30.

[5]

I. Budhiraja, N. Kumar, S. Tyagi, S. Tanwar, Z. Han, M.J. Piran, D.Y. Suh, Asys-tematic review on noma variants for 5g and beyond, IEEE Access 9 (2021) 85573-85644.

[6]

I. Randrianantenaina, M. Kaneko, H. Dahrouj, H. ElSawy, M.-S. Alouini, Interference management in noma-based fog-radio access networks via scheduling and power allocation, IEEE Trans. Commun. 68 (8) (2020) 5056-5071.

[7]

H. Jiang, Q. Cui, Y. Gu, X. Qin, X. Zhang, X. Tao, Distributed layered grant-free non-orthogonal multiple access for massive mtc, in: 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), IEEE, 2018, pp. 1-7.

[8]

M. Bennis, M. Debbah, H.V. Poor, Ultrareliable and low-latency wireless communi-cation: tail, risk, and scale, Proc. IEEE 106 (10) (2018) 1834-1853.

[9]

S.R. Islam, M. Zeng, O.A. Dobre, K.-S. Kwak, Resource allocation for downlink noma systems: key techniques and open issues, IEEE Wirel. Commun. 25 (2) (2018) 40-47.

[10]

M. Kaneko, I. Randrianantenaina, H. Dahrouj, H. Elsawy, M.-S. Alouini, On the op-portunities and challenges of noma-based fog radio access networks: an overview, IEEE Access 8 (2020) 205467-205476.

[11]

D. Tse, P. Viswanath, Fundamentals of Wireless Communication, Cambridge Univer-sity Press, 2005.

[12]

B. Makki, K. Chitti, A. Behravan, M.-S. Alouini, A survey of noma: current status and open research challenges, IEEE Open J. Commun. Soc. 1 (2020) 179-189.

[13]

X. Gu, X. Ji, Z. Ding, W. Wu, M. Peng, Outage probability analysis of non-orthogonal multiple access in cloud radio access networks, IEEE Commun. Lett. 22 (1) (2017) 149-152.

[14]

R. Rai, H. Zhu, J. Wang, Performance analysis of non-orthogonal multiple access (noma) enabled cloud radio access networks, IEEE Trans. Wirel. Commun. 21 (11)(2022) 9366-9380.

[15]

Z. Ding, X. Lei, G.K. Karagiannidis, R. Schober, J. Yuan, V.K. Bhargava, A survey on non-orthogonal multiple access for 5g networks: research challenges and future trends, IEEE J. Sel. Areas Commun. 35 (10) (2017) 2181-2195.

[16]

L.P. Qian, B. Shi, Y. Wu, B. Sun, D.H. Tsang, Noma-enabled mobile edge computing for internet of things via joint communication and computation resource allocations, IEEE Int. Things J. 7(1) (2019) 718-733.

[17]

Z. Wei, D.W.K. Ng, J. Yuan, H.-M. Wang, Optimal resource allocation for power-efficient mc-noma with imperfect channel state information, IEEE Trans. Commun. 65 (9) (2017) 3944-3961.

[18]

S. Han, X. Xu, Z. Liu, P. Xiao, K. Moessner, X. Tao, P. Zhang, Energy-efficient short packet communications for uplink noma-based massive mtc networks, IEEE Trans. Veh. Technol. 68 (12) (2019) 12066-12078.

[19]

K.S. Ali, H. Elsawy, A. Chaaban, M.-S. Alouini,Non-orthogonal multiple access for large-scale 5g networks: interference aware design, IEEE Access 5 (2017) 21204-21216.

[20]

H. Zhang, Y. Qiu, K. Long, G.K. Karagiannidis, X. Wang, A. Nallanathan, Resource allocation in noma-based fog radio access networks, IEEE Wirel. Commun. 25 (3)(2018) 110-115.

[21]

Y. Liu, F.R. Yu, X. Li, H. Ji, V.C. Leung, Distributed resource allocation and com-putation offloading in fog and cloud networks with non-orthogonal multiple access, IEEE Trans. Veh. Technol. 67 (12) (2018) 12137-12151.

[22]

R. Rai, H. Zhu, J. Wang, Performance analysis of noma enabled fog radio access networks, IEEE Trans. Commun. 69 (1) (2020) 382-397.

[23]

S. Mostafa, C.W. Sung, Y. Guo, Joint computation and communication resource allo-cation with noma and oma offloading for multi-server systems in f-ran, IEEE Access 10 (2022) 24456-24466.

[24]

Y. Qiu, H. Zhang, K. Long, M. Guizani, Subchannel assignment and power allocation for time-varying fog radio access network with noma, IEEE Trans. Wirel. Commun. 20 (6) (2021) 3685-3697.

[25]

J. Zhao, Y. Liu, K.K. Chai, A. Nallanathan, Y. Chen, Z. Han, Spectrum allocation and power control for non-orthogonal multiple access in hetnets, IEEE Trans. Wirel. Commun. 16 (9) (2017) 5825-5837.

[26]

K. Wang, Y. Liu, Z. Ding, A. Nallanathan, M. Peng, User association and power allocation for multi-cell non-orthogonal multiple access networks, IEEE Trans. Wirel. Commun. 18 (11) (2019) 5284-5298.

[27]

Z. Ding, Z. Yang, P. Fan, H.V. Poor, On the performance of non-orthogonal multi-ple access in 5g systems with randomly deployed users, IEEE Signal Process. Lett. 21 (12) (2014) 1501-1505.

[28]

M. Baghani, S. Parsaeefard, M. Derakhshani, W. Saad, Dynamic non-orthogonal mul-tiple access and orthogonal multiple access in 5g wireless networks, IEEE Trans. Commun. 67 (9) (2019) 6360-6373.

[29]

L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-Lin, Z. Wang, Non-orthogonal multiple access for 5g: solutions, challenges, opportunities, and future research trends, IEEE Commun. Mag. 53 (9) (2015) 74-81.

[30]

B. Ling, C. Dong, J. Dai, J. Lin, Multiple decision aided successive interference can-cellation receiver for noma systems, IEEE Wir. Commun. Lett. 6(4) (2017) 498-501.

[31]

C. Ng, D.S. Hirschberg, Three-dimensional stable matching problems, SIAM J. Dis-crete Math. 4(2) (1991) 245-252.

[32]

Z. Han, D. Niyato, W. Saad, T. Başar, A. Hjørungnes, Game Theory in Wireless and Communication Networks: Theory, Models, and Applications, Cambridge University Press, 2012.

[33]

E. Bodine-Baron, C. Lee, A. Chong, B. Hassibi, A. Wierman,Peer effects and stability in matching markets, in:Algorithmic Game Theory: 4th International Symposium, SAGT 2011, Amalfi, Italy, October 17-19, 2011. Proceedings 4, Springer, 2011, pp. 117-129.

[34]

W. Saad, Z. Han, M. Debbah, A. Hjorungnes, T. Basar, Coalitional game theory for communication networks, IEEE Signal Process. Mag. 26 (5) (2009) 77-97.

[35]

B. Di, L. Song, Y. Li, Sub-channel assignment, power allocation, and user scheduling for non-orthogonal multiple access networks, IEEE Trans. Wirel. Commun. 15 (11)(2016) 7686-7698.

[36]

J. Papandriopoulos, J.S. Evans, Low-Complexity Distributed Algorithms for Spec-trum Balancing in Multi-User dsl Networks, 2006 IEEE International Conference on Communications, vol. 7, IEEE, 2006, pp. 3270-3275.

[37]

S. Boyd, S.P. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.

[38]

W. Yu, R. Lui, Dual methods for nonconvex spectrum optimization of multicarrier systems, IEEE Trans. Commun. 54 (7) (2006) 1310-1322.

[39]

Q. Shi, C. He, L. Jiang, Normalized incremental subgradient algorithm and its appli-cation, IEEE Trans. Signal Process. 57 (10) (2009) 3759-3774.

[40]

M.G. Kibria, K. Nguyen, G.P. Villardi, K. Ishizu, F. Kojima, Next generation new radio small cell enhancement: architectural options, functionality and performance aspects, IEEE Wirel. Commun. 25 (4) (2018) 120-128.

[41]

R.K. Jain, D.-M.W. Chiu, W.R. Hawe, et al., A Quantitative Measure of Fairness and Discrimination, Eastern Research Laboratory, Digital Equipment Corporation, Hudson, MA 21, 1984, pp. 1-38.

AI Summary AI Mindmap
PDF

84

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/