Secure intelligent reflecting surface assisted mobile edge computing system with wireless power transfer

Dawei Wang , Xuanrui Li , Menghan Wu , Yixin He , Yi Lou , Yu Pang , Yi Lu

›› 2024, Vol. 10 ›› Issue (6) : 1874 -1880.

PDF
›› 2024, Vol. 10 ›› Issue (6) :1874 -1880. DOI: 10.1016/j.dcan.2023.07.007
Short communication
research-article

Secure intelligent reflecting surface assisted mobile edge computing system with wireless power transfer

Author information +
History +
PDF

Abstract

In this paper, we study an Intelligent Reflecting Surface (IRS) assisted Mobile Edge Computing (MEC) system under eavesdropping threats, where the IRS is used to enhance the energy signal transmission and the offloading performance between Wireless Devices (WDs) and the Access Point (AP). Specifically, in the proposed scheme, the AP first powers all WDs with the wireless power transfer through both direct and IRS-assisted links. Then, powered by the harvested energy, all WDs securely offload their computation tasks through the two links in the time division multiple access mode. To determine the local and offloading computational bits, we formulate an optimization problem to jointly design the IRS's phase shift and allocate the time slots constrained by the security and energy requirements. To cope with this non-convex optimization problem, we adopt semidefinite relaxations, singular value decomposition techniques, and Lagrange dual method. Moreover, we propose a dichotomy particle swarm algorithm based on the bisection method to process the overall optimization problem and improve the convergence speed. The numerical results illustrate that the proposed scheme can boost the performance of MEC and secure computation rates compared with other IRS-assisted MEC benchmark schemes.

Keywords

Intelligent reflecting surface / Mobile edge computing / Power transfer / Information security

Cite this article

Download citation ▾
Dawei Wang, Xuanrui Li, Menghan Wu, Yixin He, Yi Lou, Yu Pang, Yi Lu. Secure intelligent reflecting surface assisted mobile edge computing system with wireless power transfer. , 2024, 10(6): 1874-1880 DOI:10.1016/j.dcan.2023.07.007

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Z. Xiao, et al., Vehicular task offloading via heat-aware MEC cooperation using game-theoretic method, IEEE Int. Things J. 7(3) (2020) 2038-2052.

[2]

D.X. Wang, Joint power and time allocation for NOMA-MEC offloading, IEEE Trans. Veh. Technol. 68 (6) (2019) 6207-6211.

[3]

D. Wang, M. Wu, Z. Wei, K. Yu, L. Min, S. Mumtaz, Uplink secrecy performance of RIS-based RF/FSO three-dimension heterogeneous networks, IEEE Trans. Wireless Commun. 23 (3) (2024) 1798-1809.

[4]

D. Wang, F. Zhou, W. Lin, Z. Ding, N. Al-Dhahir, Cooperative hybrid nonorthogo-nal multiple access-based mobile-edge computing in cognitive radio networks, IEEE Trans. Cogn. Commun. Netw. 8(2) (2022) 1104-1117.

[5]

S. Li, B. Li, W. Zhao, Joint optimization of caching and computation in multi-server NOMA-MEC system via reinforcement learning, IEEE Access 8 (2020) 112762-112771.

[6]

S. Zarandi, H. Tabassum, Delay minimization in sliced multi-cell mobile edge com-puting (MEC) systems, IEEE Commun. Lett. 25 (6) (2021) 1964-1968.

[7]

J. Fu, J. Hua, J. Wen, H. Chen, W. Lu, J. Li, Optimization of energy consumption in the MEC-assisted multi-user FD-SWIPT system, IEEE Access 8 (2020) 21345-21354.

[8]

Y. Nie, J. Zhao, F. Gao, F.R. Yu, Semi-distributed resource management in UAV-aided MEC systems: a multi-agent federated reinforcement learning approach, IEEE Trans. Veh. Technol. 70 (12) (2021) 13162-13173.

[9]

V. Huy Hoang, T.M. Ho, L.B. Le, Mobility-aware computation offloading in MEC-based vehicular wireless networks, IEEE Commun. Lett. 24 (2) (2020) 466-469.

[10]

C. You, B. Zheng, R. Zhang, Fast beam training for IRS-assisted multiuser communi-cations, IEEE Wirel. Commun. Lett. 9 (11) (2020) 1845-1849.

[11]

Q. Wu, R. Zhang, Towards smart and reconfigurable environment: intelligent reflect-ing surface aided wireless network, IEEE Commun. Mag. 58 (1) (2020) 106-112.

[12]

P. Swami, V. Bhatia, Impact of distance on outage probability in IRS-NOMA for beyond 5G networks, in: 2021 IEEE 18th Annual Consumer Communications & Net-working Conference, CCNC, 2021, pp. 1-2.

[13]

Z. Chu, P. Xiao, M. Shojafar, D. Mi, J. Mao, W. Hao, Intelligent reflecting surface assisted mobile edge computing for Internet of things, IEEE Wirel. Commun. Lett. 10 (3) (2021) 619-623.

[14]

T. Bai, C. Pan, Y. Deng, M. Elkashlan, A. Nallanathan, L. Hanzo, Latency minimiza-tion for intelligent reflecting surface aided mobile edge computing, IEEE J. Sel. Areas Commun. 38 (11) (2020) 2666-2682.

[15]

P. Chen, B. Lyu, Z. Yang, Intelligent reflecting surface enhanced wireless powered mobile edge computing, in: 2021 IEEE/CIC International Conference on Communi-cations in China, ICCC, 2021, pp. 1101-1106.

[16]

N. Li, M. Li, Y. Liu, C. Yuan, X. Tao, Intelligent reflecting surface assisted NOMA with heterogeneous internal secrecy requirements, IEEE Wirel. Commun. Lett. 10 (5)(2021) 1103-1107.

[17]

G. Ma, J. Xu, Y.-F. Liu, M.R.V. Moghadam, Time-division energy beamforming for multiuser wireless power transfer with non-linear energy harvesting, IEEE Wirel. Commun. Lett. 10 (1) (2021) 53-57.

[18]

A. Shome, A.K. Dutta, S. Chakrabarti, Throughput assessment of non-linear energy harvesting secondary IoT network with hardware impairments and randomly lo-cated licensed users in Nakagami-𝑚 fading, IEEE Trans. Veh. Technol. 70 (7) (2021) 7283-7288.

[19]

K. Xu, et al., Beam-domain SWIPT for mMIMO system with nonlinear energy har-vesting legitimate terminals and a non-cooperative terminal, IEEE Trans. Green Commun. Netw. 3(3) (2019) 703-720.

[20]

E. Boshkovska, D.W.K. Ng, N. Zlatanov, R. Schober, Practical non-linear energy harvesting model and resource allocation for SWIPT systems, IEEE Commun. Lett. 19 (12) (2015) 2082-2085.

[21]

P. Chen, B. Lyu, Z. Yang, Intelligent reflecting surface enhanced wireless powered mobile edge computing, in: 2021 IEEE/CIC International Conference on Communi-cations in China, ICCC, 2021, pp. 1101-1106.

[22]

D. Adionel Guimaraes, G.H. Faria Floriano, L. Silvestre Chaves, A tutorial on the CVX system for modeling and solving convex optimization problems, IEEE Lat. Am. Trans. 13 (5) (2015) 1228-1257.

[23]

Z. Chu, P. Xiao, M. Shojafar, D. Mi, J. Mao, W. Hao, Intelligent reflecting surface assisted mobile edge computing for Internet of things, IEEE Wirel. Commun. Lett. 10 (3) (2021) 619-623.

[24]

T. Bai, C. Pan, Y. Deng, M. Elkashlan, A. Nallanathan, L. Hanzo, Latency minimiza-tion for intelligent reflecting surface aided mobile edge computing, IEEE J. Sel. Areas Commun. 38 (11) (2020) 2666-2682.

[25]

P. Chen, B. Lyu, Z. Yang, Intelligent reflecting surface enhanced wireless powered mobile edge computing, in: 2021 IEEE/CIC International Conference on Communi-cations in China, ICCC, 2021, pp. 1101-1106.

AI Summary AI Mindmap
PDF

92

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/