Intelligent cache and buffer optimization for mobile VR adaptive transmission in 5G edge computing networks

Junchao Yang , Ali Kashif Bashir , Zhiwei Guo , Keping Yu , Mohsen Guizani

›› 2024, Vol. 10 ›› Issue (5) : 1234 -1244.

PDF
›› 2024, Vol. 10 ›› Issue (5) :1234 -1244. DOI: 10.1016/j.dcan.2023.07.003
Research article
research-article

Intelligent cache and buffer optimization for mobile VR adaptive transmission in 5G edge computing networks

Author information +
History +
PDF

Abstract

Virtual Reality (VR) is a key industry for the development of the digital economy in the future. Mobile VR has advantages in terms of mobility, lightweight and cost-effectiveness, which has gradually become the mainstream implementation of VR. In this paper, a mobile VR video adaptive transmission mechanism based on intelligent caching and hierarchical buffering strategy in Mobile Edge Computing (MEC)-equipped 5G networks is proposed, aiming at the low latency requirements of mobile VR services and flexible buffer management for VR video adaptive transmission. To support VR content proactive caching and intelligent buffer management, users' behavioral similarity and head movement trajectory are jointly used for viewpoint prediction. The tile-based content is proactively cached in the MEC nodes based on the popularity of the VR content. Second, a hierarchical buffer-based adaptive update algorithm is presented, which jointly considers bandwidth, buffer, and predicted viewpoint status to update the tile chunk in client buffer. Then, according to the decomposition of the problem, the buffer update problem is modeled as an optimization problem, and the corresponding solution algorithms are presented. Finally, the simulation results show that the adaptive caching algorithm based on 5G intelligent edge and hierarchical buffer strategy can improve the user experience in the case of bandwidth fluctuations, and the proposed viewpoint prediction method can significantly improve the accuracy of viewpoint prediction by 15%.

Keywords

Virtual reality / Adaptive transmission / Edge cache / Buffer management / 5G / Mobile edge computing

Cite this article

Download citation ▾
Junchao Yang, Ali Kashif Bashir, Zhiwei Guo, Keping Yu, Mohsen Guizani. Intelligent cache and buffer optimization for mobile VR adaptive transmission in 5G edge computing networks. , 2024, 10(5): 1234-1244 DOI:10.1016/j.dcan.2023.07.003

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Xia, Z. Yao, Y. Li, S. Mao, Online distributed offloading and computing resource management with energy harvesting for heterogeneous mec-enabled iot, IEEE Trans. Wireless Commun. 20 (10) (2021) 6743-6757.

[2]

J. Yang, F. Lin, C. Chakraborty, K. Yu, Z. Guo, A. Nguyen, J.J.P.C. Rodrigues, A parallel intelligence-driven resource scheduling scheme for digital twins-based intelligent vehicular systems, IEEE Trans. Intell. Veh. 8 (4) (2023) 2770-2785.

[3]

Z. Zhou, X. Dong, Z. Li, K. Yu, C. Ding, Y. Yang, Spatio-temporal feature encoding for traffic accident detection in VANET environment, IEEE Trans. Intell. Transport. Syst. 23 (10) (2022) 19772-19781.

[4]

K. Yu, L. Tan, C. Yang, K.R. Choo, A.K. Bashir, J.J.P.C. Rodrigues, T. Sato, A blockchain-based shamir’s threshold cryptography scheme for data protection in industrial internet of things settings, IEEE Internet Things J. 9 (11) (2022) 8154-8167.

[5]

Z. Guo, K. Yu, Z. Lv, K.R. Choo, P. Shi, J.J.P.C. Rodrigues, Deep federated learning enhanced secure POI microservices for cyber-physical systems, IEEE Wireless Commun. 29 (2) (2022) 22-29.

[6]

Z. Guo, K. Yu, N. Kumar, W. Wei, S. Mumtaz, M. Guizani, Deep-distributed-learning-based POI recommendation under mobile-edge networks, IEEE Internet Things J. 10 (1) (2023) 303-317.

[7]

B. Zhu, K. Chi, J. Liu, K. Yu, S. Mumtaz, Efficient offloading for minimizing task computation delay of noma-based multiaccess edge computing, IEEE Trans. Commun. 70 (5) (2022) 3186-3203.

[8]

C. Chen, Z. Liao, Y. Ju, C. He, K. Yu, S. Wan, Hierarchical domain-based multi-controller deployment strategy in sdn-enabled space-air-ground integrated network, IEEE Trans. Aero. Electron. Syst. 58 (6) (2022) 4864-4879.

[9]

M. Chen, K. Hu, I. Chung, C. Chou, Towards VR/AR multimedia content multicast over wireless LAN, in: Proceedings of the 16th IEEE Annual Consumer Communications & Networking Conference, CCNC, 2019, IEEE, 2019, pp. 1-6.

[10]

F. Duanmu, E. Kurdoglu, S.A. Hosseini, Y. Liu, Y. Wang,Prioritized buffer control in two-tier 360 video streaming,in: Proceedings of the Workshop on Virtual Reality and Augmented Reality Network, VR/AR Network@SIGCOMM 2017, ACM, 2017, pp. 13-18.

[11]

M. Chen, W. Saad, C. Yin, Virtual reality over wireless networks: quality-of-service model and learning-based resource management, IEEE Trans. Commun. 66 (11)(2018) 5621-5635.

[12]

M. Almquist, V. Almquist, V. Krishnamoorthi, N. Carlsson, D.L. Eager,The prefetch aggressiveness tradeoff in 360◦ video streaming, in:Proceedings of the 9th ACM Multimedia Systems Conference, MMSys 2018, ACM, 2018, pp. 258-269.

[13]

F. Duanmu, E. Kurdoglu, S.A. Hosseini, Y. Liu, Y. Wang,Prioritized buffer control in two-tier 360 video streaming,in: Proceedings of the Workshop on Virtual Reality and Augmented Reality Network, VR/AR Network@SIGCOMM 2017, ACM, 2017, pp. 13-18.

[14]

M. Budagavi, J. Furton, G. Jin, A. Saxena, J. Wilkinson, A. Dickerson, 360 degrees video coding using region adaptive smoothing, in: 2015 IEEE International Conference on Image Processing, ICIP 2015, IEEE, 2015, pp. 750-754.

[15]

V. Sitzmann, A. Serrano, A. Pavel, M. Agrawala, D. Gutierrez, B. Masiá, G. Wetzstein, Saliency in VR: how do people explore virtual environments? IEEE Trans. Vis. Comput. Graph. 24 (4) (2018) 1633-1642.

[16]

P. Rondao-Alface, J. Macq, N. Verzijp, Interactive omnidirectional video delivery: a bandwidth-effective approach, Bell Labs Tech. J. 16 (4) (2012) 135-147.

[17]

A.T. Nasrabadi, A. Mahzari, J.D. Beshay, R. Prakash,Adaptive 360-degree video streaming using scalable video coding, in:Proceedings of the 2017 ACM on Multimedia Conference, MM 2017, ACM, 2017, pp. 1689-1697.

[18]

L. Feng, Z. Yang, Y. Yang, X. Que, K. Zhang, Smart mode selection using online reinforcement learning for VR broadband broadcasting in D2D assisted 5g hetnets, IEEE Trans. Broadcast. 66 (2) (2020) 600-611.

[19]

J. Yang, J. Luo, D. Meng, J. Hwang. Qoe-driven resource allocation optimized for delay-sensitive VR video uploading over cellular network, IEEE, Barcelona, Spain, 2019, pp. 1-6.

[20]

Y. Li, H. Ma, L. Wang, S. Mao, G. Wang, Optimized content caching and user association for edge computing in densely deployed heterogeneous networks, IEEE Trans. Mobile Comput. 21 (6) (2022) 2130-2142.

[21]

M. Abdelrahman, M. Elbamby, V. Räisänen,Proactive scheduling and caching for wireless VR viewport streaming, in: IEEE Globecom 2021 Workshops, IEEE, 2021, pp. 1-6.

[22]

J. Yang, J. Luo, J. Wang, S. Guo, Cmu-Vp, Cooperative multicast and unicast with viewport prediction for VR video streaming in 5g H-CRAN, IEEE Access 7 (2019) 134187-134197.

[23]

Y. Ban, L. Xie, Z. Xu, X. Zhang, Z. Guo, Y. Wang, CUB360: exploiting cross-users behaviors for viewport prediction in 360 video adaptive streaming,in: Proceedings of the 2018 IEEE International Conference on Multimedia and Expo, ICME 2018, IEEE Computer Society, 2018, pp. 1-6.

[24]

A.D. Abreu, C. Ozcinar, A. Smolic, Look around you: saliency maps for omnidirectional images in VR applications,in: Proceedings of the Ninth International Conference on Quality of Multimedia Experience, QoMEX 2017, IEEE, 2017, pp. 1-6.

[25]

G. Ravindra, W.T. Ooi, On tile assignment for region-of-interest video streaming in a wireless LAN, in: Proceedings of the 2012 Network and Operating System Support for Digital Audio and Video Workshop, ACM, 2012, pp. 59-64.

[26]

S. Liao, J. Wu, J. Li, K. Konstantin, Information-centric massive iot-based ubiquitous connected VR/AR in 6g: a proposed caching consensus approach, IEEE Internet Things J. 8 (7) (2021) 5172-5184.

[27]

C. Wu, Z. Tan, Z. Wang, S. Yang, A dataset for exploring user behaviors in VR spherical video streaming, in: Proceedings of the 8th ACM on Multimedia Systems Conference, ACM, 2017, pp. 193-198.

[28]

Q. Cheng, H. Shan, W. Zhuang, L. Yu, Z. Zhang, T.Q.S. Quek, Design and analysis of MEC- and proactive caching-based 360◦ mobile VR video streaming, IEEE Trans. Multimed. 24 (2022) 1529-1544.

[29]

J. Park, J. Hwang, H. Wei, Cross-layer optimization for VR video multicast systems, in: Proceedings of the IEEE Global Communications Conference, IEEE, 2018, pp. 206-212.

[30]

Y. Jin, J. Liu, F. Wang, Ebublio: edge assisted multi-user 360-degree video streaming,in:Proceedings of the 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops, VR Workshops, IEEE, 2022, pp. 600-601.

[31]

K. Liu, Y. Liu, J. Liu, A. Argyriou, Tile caching for scalable VR video streaming over 5g mobile networks, J. Vis. Commun. Image Represent. 79 (2021) 103210.

[32]

J. Dai, Z. Zhang, S. Mao, D. Liu, A view synthesis-based 360◦ VR caching system over mec-enabled C-RAN, IEEE Trans. Circ. Syst. Video Technol. 30 (10) (2020) 3843-3855.

[33]

M. Peng, T.Q.S. Quek, G. Mao, Z. Ding, C. Wang, Artificial-intelligence-driven fog radio access networks: recent advances and future trends, IEEE Wireless Commun. 27 (2) (2020) 12-13.

[34]

P. Maniotis, E. Bourtsoulatze, N. Thomos, Tile-based joint caching and delivery of 360◦ videos in heterogeneous networks, IEEE Trans. Multimed. 22 (9) (2020) 2382-2395.

[35]

Y. Liu, J. Liu, A. Argyriou, L. Wang, Z. Xu, Rendering-aware VR video caching over multi-cell MEC networks, IEEE Trans. Veh. Technol. 70 (3) (2021) 2728-2742.

[36]

F. Guo, F.R. Yu, H. Zhang, H. Ji, V.C.M. Leung, X. Li, An adaptive wireless virtual reality framework in future wireless networks: a distributed learning approach, IEEE Trans. Veh. Technol. 69 (8) (2020) 8514-8528.

[37]

S. Zehtabian, M. Razghandi, L. Bölöni, D. Turgut, Predictive caching for AR/VR experiences in a household scenario, in: Proceedings of the 2020 International Conference on Computing, Networking and Communications, IEEE, 2020, pp. 591-595.

[38]

H. Xiao, C. Xu, Z. Feng, R. Ding, S. Yang, L. Zhong, J. Liang, G. Muntean, A transcoding-enabled 360◦ VR video caching and delivery framework for edge-enhanced next-generation wireless networks, IEEE J. Sel. Area. Commun. 40 (5)(2022) 1615-1631.

[39]

H. Ahmadi, O. Eltobgy, M. Hefeeda,Adaptive multicast streaming of virtual reality content to mobile users, in: Proceedings of the on Thematic Workshops of ACM Multimedia 2017, ACM, 2017, pp. 170-178.

[40]

G. Papaioannou, I. Koutsopoulos, Tile-based caching optimization for 360◦ videos, in: Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing, ACM, 2019, pp. 171-180.

AI Summary AI Mindmap
PDF

92

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/