Information theory based clustering of cellular network usage data for the identification of representative urban areas

Mihaela I. Chidean , Luis Ignacio Jiménez Gil , Javier Carmona-Murillo , David Cortés-Polo

›› 2024, Vol. 10 ›› Issue (6) : 1677 -1685.

PDF
›› 2024, Vol. 10 ›› Issue (6) :1677 -1685. DOI: 10.1016/j.dcan.2023.07.002
Research article
research-article

Information theory based clustering of cellular network usage data for the identification of representative urban areas

Author information +
History +
PDF

Abstract

The exponential growth of the number of network devices in recent years not only entails the need for automation of management tasks, but also leads to the increase of available network data and metadata. 5G and beyond standards already cover those requirements and also include the need to define and use machine learning techniques to take advantage of the data acquired, especially using geolocated Call Detail Record (CDR) data sets. However, this scenario requires novel cellular network analysis methodologies to exploit all these available data, especially for the network usage pattern in order to ease the management tasks. In this work, a novel method based on information theory metrics like the Kullback-Leibler divergence and data classification algorithms is proposed to identify representative urban areas in terms of the network usage pattern. Methodology validation is performed via computer analysis using the Open Big Data CDR data set in the Milan area for different scenarios. Obtained results validate the proposed methodology and also reveal its adaptability in terms of specific scenario characteristics. Network usage patterns are calculated for each representative area, paving the path to several future research lines in network management, such as network usage prediction based on this methodology and using the comportment time series.

Keywords

Clustering / 5G / Network analysis / Multi-feature analysis / Kullback-Leibler divergence / Cellular networks

Cite this article

Download citation ▾
Mihaela I. Chidean, Luis Ignacio Jiménez Gil, Javier Carmona-Murillo, David Cortés-Polo. Information theory based clustering of cellular network usage data for the identification of representative urban areas. , 2024, 10(6): 1677-1685 DOI:10.1016/j.dcan.2023.07.002

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

International Telecommunication Union (ITU), Measuring digital development facts and figures 2021, https://www.itu.int/en/ITU-D/Statistics/Documents/facts/FactsFigures2021.pdf, 2003. (Accessed 30 January 2022).

[2]

Cisco Systems Inc., Cisco Annual Internet Report (2018-2023), http://www.cisco.com/, 2020. (Accessed 30 January 2022).

[3]

Y. Zhou, L. Liu, L. Wang, N. Hui, X. Cui, J. Wu, Y. Peng, Y. Qi, C. Xing, Service-aware 6g: an intelligent and open network based on the convergence of communication, computing and caching, Digital Commun. Netw. 6(3) (2020) 253-260.

[4]

Y. Zhou, L. Tian, L. Liu, Y. Qi, Fog computing enabled future mobile communication networks: a convergence of communication and computing, IEEE Commun. Mag. 57 (5) (2019) 20-27.

[5]

J. Kaur, M.A. Khan, M. Iftikhar, M. Imran, Q.E.U. Haq, Machine Learning Techniques for 5G and beyond, IEEE Access 9 (2021) 23472-23488.

[6]

M.Z. Chowdhury, M. Shahjalal, S. Ahmed, Y.M. Jang, 6G wireless communication systems: applications, requirements, technologies, challenges, and research direc-tions, IEEE Open J. Commun. Soc. 1 (2020) 957-975.

[7]

W. Saad, M. Bennis, M. Chen, A vision of 6G wireless systems: applications, trends, technologies, and open research problems, IEEE Netw. 34 (2020) 134-142.

[8]

H. Grosser, P. Britos, R. García-Martínez, Detecting fraud in mobile telephony us-ing neural networks, in: M. Ali, F. Esposito (Innovations in Applied Artificial Intelligence,Eds.), Springer, Berlin Heidelberg, 2005, pp. 613-615.

[9]

L.G. Moyano, O.R. Thomae, E. Frias-Martinez, Uncovering the Spatio-Temporal Structure of Social Networks Using Cell Phone Records, 2012, pp. 242-249.

[10]

L. Gauvin, M. Tizzoni, S. Piaggesi, A. Young, N. Adler, S. Verhulst, L. Ferres, C. Cattuto, Gender gaps in urban mobility, Humanit. Soc. Sci. Commun. 7 (11) (2020) 1-11.

[11]

R. Imai, D. Ikeda, H. Shingai, T. Nagata, K. Shigetaka, Origin-destination trips gen-erated from operational data of a mobile network for urban transportation planning, J. Urban Plann. Dev. 147 (1) (2021) 04020049.

[12]

K.H. Jones, H. Daniels, S. Heys, D.V. Ford, Challenges and potential opportunities of mobile phone call detail records in health research: review, JMIR mHealth uHealth 6( 7) (2018) e9974.

[13]

Q. Zhu, L. Sun, IEEE Access 8 (2020) 31398-31408.

[14]

K. Sultan, H. Ali, A. Ahmad, Z. Zhang, Call details record analysis: a spatiotemporal exploration toward mobile traffic classification and optimization, Information 10 (6)(2019) 192.

[15]

I. Alawe, A. Ksentini, Y. Hadjadj-Aoul, P. Bertin, Improving traffic forecasting for 5g core network scalability: a machine learning approach, IEEE Netw. 32 (6) (2018) 42-49.

[16]

I. Lohrasbinasab, A. Shahraki, A. Taherkordi, A. Delia Jurcut, From statistical-to machine learning-based network traffic prediction, Trans. Emerg. Telecommun. Technol. 33 (4) (2022) e4394.

[17]

E. Coronado, R. Behravesh, T. Subramanya, A. Fernández-Fernández, S. Siddiqui, X. Costa-Pérez, R. Riggio, Zero touch management: a survey of network automa-tion solutions for 5g and 6g networks, IEEE Commun. Surv. Tutor. 24 (4) (2022) 2535-2578.

[18]

L. Toka, G. Dobreff, B. Fodor, B. Sonkoly, Machine learning-based scaling manage-ment for kubernetes edge clusters, IEEE Trans. Netw. Serv. Manag. 18 (1) (2021) 958-972.

[19]

M. Yan, G. Feng, J. Zhou, Y. Sun, Y.-C. Liang, Intelligent resource scheduling for 5g radio access network slicing, IEEE Trans. Veh. Technol. 68 (8) (2019) 7691-7703.

[20]

D. Cortés-Polo, L.I. Jiménez Gil, J. Calle-Cancho, J.-L. González-Sánchez, A novel methodology based on orthogonal projections for a mobile network data set analy-sis, IEEE Access 7 (2019) 158007-158015.

[21]

D. Cortés-Polo, L.I. Jimenez Gil, J.-L. González-Sánchez, J. Calle-Cancho, A method-ology for network analysis to improve the cyber-physicals communications in next-generation networks, Sensors 20 (8) (2020) 2247.

[22]

A. Plaza, G. Martín, J. Plaza, M. Zortea, S. Sánchez, Recent developments in end-member extraction and spectral unmixing, in: Optical Remote Sensing, Springer, 2011, pp. 235-267.

[23]

G. Barlacchi, M. De Nadai, R. Larcher, A. Casella, C. Chitic, G. Torrisi, F. Antonelli, A. Vespignani, A. Pentland, B. Lepri, A multi-source dataset of urban life in the city of Milan and the Province of Trentino, Scientific data, Nature 2(1) (2015) 1-15.

[24]

C. Benzaid, T. Taleb, Ai-driven zero touch network and service management in 5g and beyond: challenges and research directions, IEEE Netw. 34 (2020) 186-194.

[25]

S. Kullback, R.A. Leibler, On information and sufficiency, Ann. Math. Stat. 22 (1)(1951) 79-86.

[26]

T.M. Cover, J.A. Thomas, Elements of Information Theory, 2nd edition, John Wiley & Sons, 2006.

[27]

H. Jeffreys, An invariant form for the prior probability in estimation problems, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 186 (1007) (1946) 453-461.

[28]

D. Johnson, S. Sinanovic,Symmetrizing the Kullback-Leibler distance, Technical report of Rice University (US), https://scholarship.rice.edu/handle/1911/19969, 2001. (Accessed 30 January 2022).

[29]

S. Lloyd, Least squares quantization in PCM, IEEE Trans. Inf. Theory 28 (2) (1982) 129-137.

[30]

D.L. Davies, D.W. Bouldin, A cluster separation measure, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-1 (2) (1979) 224-227.

[31]

M. Bouet, V. Conan, Mobile edge computing resources optimization: a geo-clustering approach, IEEE Trans. Netw. Serv. Manag. 15 (2) (2018) 787-796.

[32]

L. Maokuan, C. Yusheng, Z. Honghai, Unlabeled data classification via support vec-tor machines and k-means clustering, in: Proceedings. International Conference on Computer Graphics, Imaging and Visualization, in:CGIV 2004, IEEE, 2004, pp. 183-186.

[33]

J. Xie, C. Wang, Y. Zhang, S. Jiang,Clustering support vector machines for unla-beled data classification, in:Proceedings of the International Symposium on Test and Measurement, vol. 2, 2009, pp. 34-38.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/