Performance comparison of single-carrier and multi-carrier waveforms over terahertz wireless channels

Dongxuan He , Zhi Zhang , Hao Lin , Zuomin Wu , Yingpei Huang , Zhaocheng Wang

›› 2024, Vol. 10 ›› Issue (5) : 1297 -1304.

PDF
›› 2024, Vol. 10 ›› Issue (5) :1297 -1304. DOI: 10.1016/j.dcan.2023.07.001
Research article
research-article

Performance comparison of single-carrier and multi-carrier waveforms over terahertz wireless channels

Author information +
History +
PDF

Abstract

Terahertz (THz) wireless communication has been recognized as a powerful technology to meet the ever-increasing demand of ultra-high rate services. In order to achieve efficient and reliable wireless communications over THz bands, it is extremely necessary to find an appropriate waveform for THz communications. In this paper, performance comparison of various single-carrier and multi-carrier waveforms over THz channels will be provided. Specifically, first, a system model for terahertz communication is briefly described, which includes amplifier nonlinearity, propagation characteristic, phase noise, etc. Then, the transceiver architectures related to both single-carrier and multi-carrier waveforms are presented, as well as their corresponding signal processing techniques. To evaluate the suitability of the waveforms, key performance metrics concerning power efficiency, transmission performance, and computational complexity are provided. Simulation results are provided to compare and validate the performance of different waveforms, which demonstrate the outstanding performance of Discrete-Fourier-Transform spread Orthogonal Frequency Division Multiplexing (DFT-s-OFDM) to THz communications when compared to Cyclic Prefix-OFDM (CP-OFDM) and other single-carrier waveforms.

Keywords

Terahertz communication / RF imperfection / Single-carrier waveform / Multi-carrier waveform

Cite this article

Download citation ▾
Dongxuan He, Zhi Zhang, Hao Lin, Zuomin Wu, Yingpei Huang, Zhaocheng Wang. Performance comparison of single-carrier and multi-carrier waveforms over terahertz wireless channels. , 2024, 10(5): 1297-1304 DOI:10.1016/j.dcan.2023.07.001

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

K. M, et al., Terahertz-enabled wireless system for beyond-5G ultra-fast networks: a brief survey, IEEE Netw. 33 (4) (2019) 89-95.

[2]

I.F. Akyildiz, J.M. Jornet, C. Han, TeraNets: ultra-broadband communication net-works in the terahertz band, IEEE Wirel. Commun. 21 (4) (2014) 130-135.

[3]

Z. Chen, et al., A survey on terahertz communications, China Commun. 16 (2)(2019) 1-35.

[4]

D. He, et al., Deep learning-assisted TeraHertz QPSK detection relying on single-bit quantization, IEEE Trans. Commun. 69 (12) (2021) 8175-8187.

[5]

I.F. Akyildiz, C. Han, S. Nie, Combating the distance problem in the millimeter wave and terahertz frequency bands, IEEE Commun. Mag. 56 (6) (2018) 102-108.

[6]

D. He, Z. Wang, Deep learning-assisted demodulation for terahertz communications under hybrid distortions, IEEE Commun. Lett. 26 (2) (2021) 325-329.

[7]

E.N. Papasotiriou, A.-A.A. Boulogeorgos, A. Alexiou, Performance analysis of THz wireless systems in the presence of antenna misalignment and phase noise, IEEE Commun. Lett. 24 (6) (2020) 1211-1215.

[8]

S. Priebe, M. Jacob, T. Kürner, Angular and RMS delay spread modeling in view of THz indoor communication systems, Radio Sci. 49 (3) (2014) 242-251.

[9]

C. Lin, G.Y. Li, Distance-aware multi-carrier indoor terahertz communications with antenna array selection, in: Proceedings of 25th IEEE Annual International Sym-posium on Personal, Indoor, and Mobile Radio Communication (PIMRC), 2014, pp. 522-526.

[10]

T. van Waterschoot, V. Le Nir, J. Duplicy, M. Moonen, Analytical expressions for the power spectral density of CP-OFDM and ZP-OFDM signals, IEEE Signal Process. Lett. 17 (4) (2010) 371-374.

[11]

X. Ouyang, J. Zhao, Single-tap equalization for fast OFDM signals under generic linear channels, IEEE Commun. Lett. 18 (8) (2014) 1319-1322.

[12]

A. Sahin, R. Yang, E. Bala, M.C. Beluri, R.L. Olesen, Flexible DFT-S-OFDM: solutions and challenges, IEEE Commun. Mag. 54 (11) (2016) 106-112.

[13]

L. Deneire, B. Gyselinckx, M. Engels, Training sequence versus cyclic prefix-a new look on single carrier communication, IEEE Commun. Lett. 5(7) (2001) 292-294.

[14]

D. Falconer, et al., Frequency domain equalization for single-carrier broadband wireless systems, IEEE Commun. Mag. 40 (4) (2002) 58-66.

[15]

Y.-S. Chen, C. Lin, Blind-channel identification for MIMO single-carrier zero-padding block-transmission systems, IEEE Trans. Circuits Syst. I, Regul. Pap. 55 (6) (2008) 1571-1579.

[16]

R. Rajashekar, K.V.S. Hari, L. Hanzo, Spatial modulation aided zero-padded single carrier transmission for dispersive channels, IEEE Trans. Commun. 61 (6) (2013) 2318-2329.

[17]

T.S. Rappaport, et al., Wireless communications and applications above 100 GHz: opportunities and challenges for 6G and beyond, IEEE Access 7 (2019) 78729-78757.

[18]

3GPP RP-160671, Study on New Radio Access Technology, NTT DOCOMO,INC.

[19]

M. Honkanen, et al., New aspects on nonlinear power amplifier modeling in radio communication system simulations,in:Proceedings of 8th International Symposium on Personal, Indoor and Mobile Radio Communications, 1997, pp. 1-4.

[20]

3GPP R4-163314, Realistic power amplifier model for the New Radio evaluation, Nokia.

[21]

C. Han, A.O. Bicen, I.F. Akyildiz, Multi-ray channel modeling and wideband char-acterization for wireless communications in the terahertz band, IEEE Trans. Wirel. Commun. 14 (5) (2015) 2402-2412.

[22]

C. Han, I.F. Akyildiz, Distance-aware bandwidth-adaptive resource allocation for wireless systems in the terahertz band, IEEE Trans. THz Sci. Technol. 6(4) (2016) 541-553.

[23]

A. Hajimiri, T.H. Lee, A general theory of phase noise in electrical oscillators, IEEE J. Solid-State Circuits 33 (2) (1998) 179-194.

[24]

3GPP TR 38.808, Study on supporting NR from 52.6 GHz to 71 GHz, Release 17.

[25]

A. Tarighat, R.C.J. Hsu, A.H. Sayed, B. Jalali, Digital adaptive phase noise reduction in coherent optical links, J. Lightwave Technol. 24 (3) (2006) 1269-1276.

[26]

J. Feng, et al., Carrier phase estimation for 32-QAM optical systems using quasi-QPSK-partitioning algorithm, IEEE Photonics Technol. Lett. 28 (1) (2016) 75-78.

[27]

Z. Sha, Z. Wang, Channel estimation and equalization for terahertz receiver with RF impairments, IEEE J. Sel. Areas Commun. 39 (6) (2021) 1621-1635.

[28]

O. Edfors, M. Sandell, J.-J. van de Beek, S.K. Wilson, P.O. Borjesson, OFDM channel estimation by singular value decomposition, IEEE Trans. Commun. 46 (7) (1998) 931-939.

[29]

Q. Zou, A. Tarighat, A.H. Sayed, Compensation of phase noise in OFDM wireless systems, IEEE Trans. Signal Process. 55 (11) (2007) 5407-5424.

[30]

D. Petrovic, et al., Effects of phase noise on OFDM systems with and without PLL: characterization and compensation, IEEE Trans. Commun. 55 (8) (2007) 1607-1616.

[31]

K. Nikitopoulos, S. Stefanatos, A.K. Katsaggelos, Decision-aided compensation of severe phase-impairment-induced inter-carrier interference in frequency-selective OFDM, IEEE Trans. Wirel. Commun. 8(4) (2009) 1614-1619.

[32]

Z. Zhang, S. Loh, S. Abu-Surra, R. Taori,Mitigation of phase noise and phase rotation in single-carrier communication systems using pilots and smoothing technique, in:Proceedings of IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), 2015, pp. 1-5.

[33]

S.M. Bilal, G. Bosco, J. Cheng, A.P.T. Lau, C. Lu, Carrier phase estimation through the rotation algorithm for 64-QAM optical systems, J. Lightwave Technol. 33 (9)(2015) 1766-1773.

[34]

J. Han, et al., Carrier phase estimation based on error function calculation for 16-QAM systems, IEEE Photonics Technol. Lett. 28 (22) (2016) 2561-2564.

[35]

S. Zhang, P.Y. Kam, C. Yu, J. Chen, Laser linewidth tolerance of decision-aided max-imum likelihood phase estimation in coherent optical M-ary PSK and QAM systems, IEEE Photonics Technol. Lett. 21 (15) (2009) 1075-1077.

[36]

X. Cheng, N. Lou, B. Yuan, Iterative decision-aided compensation of phase noise in millimeter-wave SC-FDE systems, IEEE Commun. Lett. 20 (5) (2016) 1030-1033.

[37]

Pedro, et al., Joint frequency domain equalisation and phase noise estimation for single-carrier modulations in doubly-selective channels, IET Commun. 9(8) (2015) 1138-1146.

[38]

S. Wu, Y. Bar-Ness, A phase noise suppression algorithm for OFDM-based WLANs, IEEE Commun. Lett. 6 (12) (2002) 535-537.

[39]

S. Wu, P. Liu, Y. Bar-Ness, Phase noise estimation and mitigation for OFDM systems, IEEE Trans. Wirel. Commun. 5 (12) (2006) 3616-3625.

[40]

A. Leshem, M. Yemini, Phase noise compensation for OFDM systems, IEEE Trans. Signal Process. 65 (21) (2017) 5675-5686.

[41]

V. Syrjälä, T. Levanen, M. Valkama,Methods for phase noise mitigation for DFT-S-OFDM waveforms, in:Proceedings: IEEE Global Conference on Signal and Informa-tion Processing (GlobalSIP), 2016, pp. 660-664.

[42]

J. Sibel,Pilot-based phase noise tracking for uplink DFT-s-OFDM in 5G, in:Proceed-ings 25th International Conference on Telecommunications (ICT), 2018, pp. 52-56.

[43]

A. Behravan, T. Eriksson,Some statistical properties of multicarrier signals and related measures, in:Proceedings of IEEE 63rd Vehicular Technology Conference (VTC), 2006, pp. 1854-1858.

[44]

3GPP TSG RAN WG1, TDoc R1-060023, Cubic metric in 3GPP-LTE, Jan. 2006.

[45]

K.-H. Kim, J.-S. No, D.-J. Shin, On the properties of cubic metric for OFDM signals, IEEE Signal Process. Lett. 23 (1) (2016) 80-83.

[46]

3GPP TR 38.901, Study on channel model for frequencies from 0.5 to 100 GHz, Release 16.

AI Summary AI Mindmap
PDF

76

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/