Strengthening network slicing for Industrial Internet with deep reinforcement learning

Yawen Tan , Jiadai Wang , Jiajia Liu

›› 2024, Vol. 10 ›› Issue (4) : 863 -872.

PDF
›› 2024, Vol. 10 ›› Issue (4) :863 -872. DOI: 10.1016/j.dcan.2023.06.009
Research article
research-article

Strengthening network slicing for Industrial Internet with deep reinforcement learning

Author information +
History +
PDF

Abstract

Industrial Internet combines the industrial system with Internet connectivity to build a new manufacturing and service system covering the entire industry chain and value chain. Its highly heterogeneous network structure and diversified application requirements call for the applying of network slicing technology. Guaranteeing robust network slicing is essential for Industrial Internet, but it faces the challenge of complex slice topologies caused by the intricate interaction relationships among Network Functions (NFs) composing the slice. Existing works have not concerned the strengthening problem of industrial network slicing regarding its complex network properties. Towards this end, we aim to study this issue by intelligently selecting a subset of most valuable NFs with the minimum cost to satisfy the strengthening requirements. State-of-the-art AlphaGo series of algorithms and the advanced graph neural network technology are combined to build the solution. Simulation results demonstrate the superior performance of our scheme compared to the benchmark schemes.

Keywords

Industrial Internet / Network slicing / Deep reinforcement learning / Graph neural network

Cite this article

Download citation ▾
Yawen Tan, Jiadai Wang, Jiajia Liu. Strengthening network slicing for Industrial Internet with deep reinforcement learning. , 2024, 10(4): 863-872 DOI:10.1016/j.dcan.2023.06.009

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

W. Qin, S. Chen, M. Peng, Recent advances in industrial Internet: insights and chal-lenges, Digit. Commun. Netw. 6(1) (2020) 1-13.

[2]

Y. Siriwardhana, P. Porambage, M. Ylianttila, M. Liyanage, Performance analysis of local 5G operator architectures for industrial Internet, IEEE Int. Things J. 7 (12)(2020) 11559-11575.

[3]

A.E. Kalør, R. Guillaume, J.J. Nielsen, A. Mueller, P. Popovski,Network slicing in industry 4.0 applications: abstraction methods and end-to-end analysis, IEEE Trans. Ind. Inform. 14 (12) (2018) 5419-5427.

[4]

G. Li, Y. Zhou, T. Bai, J. Lin, Y. Pang, W. Wu, S. Din, G. Jeon, Performance analysis for low-complexity detection of MIMO V2V communication systems, Comput. Netw. 140 (2018) 92-100.

[5]

3GPP, Study item on communication for automation in vertical domains (CAV), Technical Report (TR) 22.804, Version 16.3.0, Jun. 2020.

[6]

M.H.C. Garcia, A. Molina-Galan, M. Boban, J. Gozalvez, B. Coll-Perales, T. Şahin, A. Kousaridas, A tutorial on 5G NR V2X communications, IEEE Commun. Surv. Tutor. 23 (3) (2021) 1972-2026.

[7]

J. Wang, J. Liu, Secure and reliable slicing in 5G and beyond vehicular networks, IEEE Wirel. Commun. 29 (1) (2022) 126-133.

[8]

H. Wu, G.T. Nguyen, A.K. Chorppath, Network slicing for conditional monitoring in the industrial Internet of things, IEEE Softw. (2018) 1-2.

[9]

3GPP,System architecture for the 5G system (5GS) (Release 17), Technical Specifi-cation (TS) 23.501, Version 17.2.0 (Sep. 2021).

[10]

D.A. Shaik, S. Park,Attacks from a new front door in 4G & 5G mobile networks, https://i.blackhat.com/USA-22/Wednesday/US-22-Shaik-Attacks-From-a-New-Front-Door-in-4G-5G-Mobile-Networks.pdf. (Accessed 15 December 2022).

[11]

W. Guan, X. Wen, L. Wang, Z. Lu, Y. Shen, A service-oriented deployment policy of end-to-end network slicing based on complex network theory, IEEE Access 6 (2018) 19691-19701.

[12]

L. Ji, S. He, W. Wu, C. Gu, J. Bi, Z. Shi, Dynamic network slicing orchestration for remote adaptation and configuration in industrial IoT, IEEE Trans. Ind. Inform. 18 (6) (2022) 4297-4307.

[13]

P. Zhang, X. Kang, Similar physical entity matching strategy for mobile edge search, Digit. Commun. Netw. 6(2) (2020) 203-209.

[14]

K. Gökarslan, Y.S. Sandal, T. Tugcu, Towards a URLLC-aware programmable data path with P 4 for industrial 5G networks, in: IEEE International Conference on Com-munications Workshops, 2021, pp. 1-6.

[15]

N.H. Motlagh, I. Afolabi, M. Pozza, M. Bagaa, T. Taleb, S. Tarkoma, H. Flinck, mMTC deployment over sliceable infrastructure: The megasense scenario, IEEE Netw. 35 (6) (2021) 247-254.

[16]

Y. Cheng, Y. Gao, L. Wang, F. Tao, Q.-G. Wang, Graph-based operational robustness analysis of industrial Internet of things platform for manufacturing service collabo-ration, Int. J. Prod. Res. (2022) 1-28.

[17]

S. Al-Rubaye, E. Kadhum, Q. Ni, A. Anpalagan, Industrial Internet of things driven by SDN platform for smart grid resiliency, IEEE Int. Things J. 6(1) (2019) 267-277.

[18]

M. Usman, N. Javaid, A. Khalid, N. Nasser, M. Imran, Robustness optimization of scale-free IoT networks, in: International Wireless Communications and Mobile Computing, 2020, pp. 2240-2244.

[19]

X. Chen, Z. Zhao, C. Wu, M. Bennis, H. Liu, Y. Ji, H. Zhang, Multi-tenant cross-slice resource orchestration: a deep reinforcement learning approach, IEEE J. Sel. Areas Commun. 37 (10) (2019) 2377-2392.

[20]

T. Wang, S. Chen, Y. Zhu, A. Tang, X. Wang Linkslice, Fine-grained network slice enforcement based on deep reinforcement learning, IEEE J. Sel. Areas Commun. 40 (8) (2022) 2378-2394.

[21]

3GPP, Study on management and orchestration of network slicing for next genera-tion network (Release 15), Technical Report (TR) 28.801, Version 15.1.0, Jan. 2018.

[22]

G. Krempl, D. Kottke, T. Pham,Statistical analysis of pairwise connectivity, in:In-ternational Conference on Discovery Science, 2021, pp. 138-148.

[23]

M. Lalou, M.A. Tahraoui, H. Kheddouci, The critical node detection problem in networks: a survey, Comput. Sci. Rev. 28 (2018) 92-117.

[24]

C. Fan, L. Zeng, Y. Sun, Y.-Y. Liu, Finding key players in complex networks through deep reinforcement learning, Nat. Mach. Intell. 2(6) (2020) 317-324.

[25]

K. Abe, Z. Xu, I. Sato, M. Sugiyama, Solving np-hard problems on graphs with ex-tended alphago zero, arXiv preprint, arXiv :1905.11623, 2019.

[26]

L. Zdeborová, P. Zhang, H.-J. Zhou, Fast and simple decycling and dismantling of networks, Sci. Rep. 6(1) (2016) 1-6.

[27]

D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., Mastering the game of Go with deep neural networks and tree search, Nature 529 (7587) (2016) 484-489.

[28]

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hu-bert, L. Baker, M. Lai, A. Bolton, et al., Mastering the game of go without human knowledge, Nature 550 (7676) (2017) 354-359.

[29]

D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al., A general reinforcement learning algo-rithm that masters chess, shogi, and go through self-play, Science 362 (6419) (2018) 1140-1144.

[30]

J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel, et al., Mastering atari, go, chess and shogi by planning with a learned model, Nature 588 (7839) (2020) 604-609.

[31]

C. Morris, M. Ritzert, M. Fey, W.L. Hamilton, J.E. Lenssen, G. Rattan, M. Grohe, Weisfeiler and leman go neural: higher-order graph neural networks,in: Proceedings of the AAAI Conference on Artificial Intelligence, 2019, pp. 4602-4609.

[32]

C. Cangea, P. Veličković, N. Jovanović, T. Kipf, P. Liò, Towards sparse hierarchical graph classifiers, arXiv preprint, arXiv :1811.01287, 2018.

[33]

K. Xu, W. Hu, J. Leskovec, S. Jegelka, How powerful are graph neural networks?, arXiv preprint, arXiv :1810.00826, 2018.

[34]

C. Fan, L. Zeng, Y. Feng, B. Xiu, J. Huang, Z. Liu, Revisiting the power of reinsertion for optimal targets of network attack, J. Cloud Comput. 9(1) (2020) 1-13.

AI Summary AI Mindmap
PDF

74

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/