Efficiency-optimized 6G: A virtual network resource orchestration strategy by enhanced particle swarm optimization

Sai Zou , Junrui Wu , Haisheng Yu , Wenyong Wang , Lisheng Huang , Wei Ni , Yan Liu

›› 2024, Vol. 10 ›› Issue (5) : 1221 -1233.

PDF
›› 2024, Vol. 10 ›› Issue (5) :1221 -1233. DOI: 10.1016/j.dcan.2023.06.008
Research article
research-article

Efficiency-optimized 6G: A virtual network resource orchestration strategy by enhanced particle swarm optimization

Author information +
History +
PDF

Abstract

The future Sixth-Generation (6G) wireless systems are expected to encounter emerging services with diverse requirements. In this paper, 6G network resource orchestration is optimized to support customized network slicing of services, and place network functions generated by heterogeneous devices into available resources. This is a combinatorial optimization problem that is solved by developing a Particle Swarm Optimization (PSO) based scheduling strategy with enhanced inertia weight, particle variation, and nonlinear learning factor, thereby balancing the local and global solutions and improving the convergence speed to globally near-optimal solutions. Simulations show that the method improves the convergence speed and the utilization of network resources compared with other variants of PSO.

Keywords

Virtualization / Network function orchestration / Network resource virtualized orchestratio n (NRVO) / Particle swarm optimization (PSO)

Cite this article

Download citation ▾
Sai Zou, Junrui Wu, Haisheng Yu, Wenyong Wang, Lisheng Huang, Wei Ni, Yan Liu. Efficiency-optimized 6G: A virtual network resource orchestration strategy by enhanced particle swarm optimization. , 2024, 10(5): 1221-1233 DOI:10.1016/j.dcan.2023.06.008

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Zou, W. Wang, W. Ni, L. Wang, Y.L. Tang, Efficient orchestration of virtualization resource in ran based on chemical reaction optimization and q-learning, IEEE Int. Things J. 9(5) (2022) 3383-3396, https://doi.org/10.1109/JIOT.2021.3098331.

[2]

What is an nfv orchestrator (nfvo) definition, https://www.sdxcentral.com/networking/nfv/definitions/nfv-orchestrator-nfvo-definition/.

[3]

Network functions virtualisation (nfv): management and orchestration, http://www.etsi.org/deliver/etsigs/NFV-MAN/001099/001/01.01.0160/gsNFV-MAN001v010101p.pdf.

[4]

B. Sonkoly, R. Szabó, B. Németh, J. Czentye, D. Haja, M. Szalay, J. Dóka, B.P. Gerő D. Jocha, L. Toka, 5g applications from vision to reality: multi-operator orchestra-tion, IEEE J. Sel. Areas Commun. 38 (7) (2020) 1401-1416.

[5]

L. Gu, D. Zeng, W. Li, S. Guo, A.Y. Zomaya, H. Jin, Intelligent vnf orchestration and flow scheduling via model-assisted deep reinforcement learning, IEEE J. Sel. Areas Commun. 38 (2) (2019) 279-291.

[6]

Nfv orchestration with cisco network services orchestrator white papers and reports, https://www.cisco.com/c/en/us/solutions/collateral/service-provider/solutions-cloud-providers/white-paper-c11-738702.html.

[7]

M.C. Luizelli, W.L. da Costa Cordeiro, L.S. Buriol, L.P. Gaspary, A fix-and-optimize approach for efficient and large scale virtual network function placement and chain-ing, Comput. Commun. 102 (2017) 67-77.

[8]

X. Xia, J. Liu, Y. Li, Particle swarm optimization algorithm with reverse-learning and local-learning behavior, J. Softw. 9(2) (2014) 350-357.

[9]

S. Zou, Y. Tang, Y. Sun, Rscmf: a mapping framework for resource scalability col-laboration in radio access networks with sdr and virtualization, J. Internet Technol. 20 (2) (2019) 447-456.

[10]

L. Xia, S. Kumar, X. Yang, P. Gopalakrishnan, Y. Liu, S. Schoenberg, X. Guo, Virtual wifi: bring virtualization from wired to wireless, ACM SIGPLAN Not. 46 (7) (2011) 181-192.

[11]

G. Bhanage, R. Daya, I. Seskar, D. Raychaudhuri, Vnts: a virtual network traffic shaper for air time fairness in 802.16 e systems, in: 2010 IEEE International Confer-ence on Communications, IEEE, 2010, pp. 1-6.

[12]

M. Otokura, K. Leibnitz, Y. Koizumi, D. Kominami, T. Shimokawa, M. Murata, Evolvable virtual network function placement method: mechanism and performance evaluation, IEEE Trans. Netw. Serv. Manag. 16 (1) (2019) 27-40.

[13]

F. Schardong, I. Nunes, A. Schaeffer-Filho, A distributed nfv orchestrator based on bdi reasoning, in: 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), IEEE, 2017, pp. 107-115.

[14]

H. Tong, J. Cao, S. Zhang, M. Li, A distributed algorithm for web service composition based on service agent model, IEEE Trans. Parallel Distrib. Syst. 22 (12) (2011) 2008-2021.

[15]

M. Gao, B. Addis, M. Bouet, S. Secci, Optimal orchestration of virtual network func-tions, Comput. Netw. 142 (2018) 108-127.

[16]

S. Zou, F. Yang, Y. Tang, L. Xiao, The resource mapping algorithm of wireless virtu-alized networks for saving energy in ultradense small cells, Mob. Inf. Syst. (2015).

[17]

S. Zou, Y. Zhang, Y. Tang, Resource allocation mechanism based on two-step map-ping for saving energy in wireless network virtualization, in: 2015 IEEE 9th Interna-tional Conference on Anti-Counterfeiting, Security, and Identification (ASID), IEEE, 2015, pp. 150-154.

[18]

S. Zou, Y. Zhao, Y. Tang, A novel algorithm of virtual resource allocation in hetero-geneous radio access networks, in: 2016 11th International Conference on Computer Science & Education (ICCSE), IEEE, 2016, pp. 401-404.

[19]

M.S. de Brito, S. Hoque, T. Magedanz, R. Steinke, A. Willner, D. Nehls, O. Keils, F. Schreiner, A service orchestration architecture for fog-enabled infrastructures, in: 2017 Second International Conference on Fog and Mobile Edge Computing (FMEC), IEEE, 2017, pp. 127-132.

[20]

G. Miotto, M.C. Luizelli, W.L. da Costa Cordeiro, L.P. Gaspary, Adaptive placement & chaining of virtual network functions with nfv-pear, J. Internet Serv. Appl. 10 (1)(2019) 1-19.

[21]

M. Bagaa, T. Taleb, A. Laghrissi, A. Ksentini, H. Flinck, Coalitional game for the creation of efficient virtual core network slices in 5 g mobile systems, IEEE J. Sel. Areas Commun. 36 (3) (2018) 469-484.

[22]

A. Pages, F. Agraz, R. Montero, G. Landi, M. Capitani, D. Gallico, M. Biancani, R. Nejabati, D. Simeonidou, S. Spadaro, Orchestrating virtual slices in data centre in-frastructures with optical dcn, Opt. Fiber Technol. 50 (2019) 36-49.

[23]

F. Bari, S.R. Chowdhury, R. Ahmed, R. Boutaba, O.C.M.B. Duarte, Orchestrating vir-tualized network functions, IEEE Trans. Netw. Serv. Manag. 13 (4) (2016) 725-739.

[24]

D. Yang, Q. Chong, B. Hu, M. Ma, Optimal operation of energy Internet based on user electricity anxiety and chaotic spatial variation particle swarm optimization, Tsinghua Sci. Technol. 23 (3) (2018) 243-253.

[25]

X. Xu, J. Li, M. Zhou, J. Xu, J. Cao, Accelerated two-stage particle swarm opti-mization for clustering not-well-separated data, IEEE Trans. Syst. Man Cybern. Syst. 50 (11) (2018) 4212-4223.

[26]

R. Santos, G. Borges, A. Santos, M. Silva, C. Sales, J.C. Costa, A semi-autonomous particle swarm optimizer based on gradient information and diversity control for global optimization, Appl. Soft Comput. 69 (2018) 330-343.

[27]

I.C. Trelea, The particle swarm optimization algorithm: convergence analysis and parameter selection, Inf. Process. Lett. 85 (6) (2003) 317-325.

[28]

M. Clerc, J. Kennedy, The particle swarm-explosion, stability, and convergence in a multidimensional complex space, IEEE Trans. Evol. Comput. 6(1) (2002) 58-73.

[29]

J. Sun, X. Wu, V. Palade, W. Fang, Y. Shi, Random drift particle swarm optimiza-tion algorithm: convergence analysis and parameter selection, Mach. Learn. 101 (1)(2015) 345-376.

[30]

F. Van den Bergh, A.P. Engelbrecht, A study of particle swarm optimization particle trajectories, Inf. Sci. 176 (8) (2006) 937-971.

[31]

M. Jiang, Y.P. Luo, S.Y. Yang, Stochastic convergence analysis and parameter se-lection of the standard particle swarm optimization algorithm, Inf. Process. Lett. 102 (1) (2007) 8-16.

[32]

H. Zhang, H. Wang, Analysis of particle swarm optimization algorithm global con-vergence method, Comput. Eng. Appl. 47 (34) (2011) 61-63.

[33]

P. Feng, L. Xiao-Ting, Z. Qian, L. Wei-Xing, G. Qi, Analysis of standard particle swarm optimization algorithm based on Markov chain, Acta Autom. Sin. 39 (4)(2013) 381-389.

[34]

S. Zou, Y. Tang, Y. Sun, K. Su, An identification decision tree learning model for self-management in virtual radio access network: idtlm, IEEE Access 6 (2017) 504-518.

[35]

S. Zou, Y. Tang, W. Ni, R.P. Liu, L. Wang, Resource multi-objective mapping algo-rithm based on virtualized network functions: rmma, Appl. Soft Comput. 66 (2018) 220-231.

[36]

Y. Al Ridhawi, A. Karmouch, Decentralized plan-free semantic-based service com-position in mobile networks, IEEE Trans. Serv. Comput. 8(1) (2014) 17-31.

[37]

M. Zeng, W. Fang, Z. Zhu, Orchestrating tree-type vnf forwarding graphs in inter-dc elastic optical networks, J. Lightwave Technol. 34 (14) (2016) 3330-3341.

[38]

L. Xiao, S. Zou, Optimize efficiency of orchestration in virtualized radio access network functions, in: 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), 2021, pp. 1-5.

[39]

Y. Yang, Z. Ning, Y.C.F. Xue, S. Zhang, H. Liu, An improved collaborative filter-ing algorithm based on RLPSO, in: DEStech Transactions on Computer Science and Engineering (AIEA), 2017.

AI Summary AI Mindmap
PDF

78

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/