An intelligent active probing and trace-back scheme for IoT anomaly detection

Luying Wang , Lingyi Chen , Neal N. Xiong , Anfeng Liu , Tian Wang , Mianxiong Dong

›› 2024, Vol. 10 ›› Issue (1) : 168 -181.

PDF
›› 2024, Vol. 10 ›› Issue (1) :168 -181. DOI: 10.1016/j.dcan.2023.06.007
Special issue on intelligent anomaly/novelty detection to enhance IoT and AIoT
research-article

An intelligent active probing and trace-back scheme for IoT anomaly detection

Author information +
History +
PDF

Abstract

Due to their simple hardware, sensor nodes in IoT are vulnerable to attack, leading to data routing blockages or malicious tampering, which significantly disrupts secure data collection. An Intelligent Active Probing and Trace-back Scheme for IoT Anomaly Detection (APTAD) is proposed to collect integrated IoT data by recruiting Mobile Edge Users (MEUs). (a) An intelligent unsupervised learning approach is used to identify anomalous data from the collected data by MEUs and help to identify anomalous nodes. (b) Recruit MEUs to trace back and propose a series of trust calculation methods to determine the trust of nodes. (c) The last, the number of active detection packets and detection paths are designed, so as to accurately identify the trust of nodes in IoT at the minimum cost of the network. A large number of experimental results show that the recruiting cost and average anomaly detection time are reduced by 6.5 times and 34.33% respectively, while the accuracy of trust identification is improved by 20%.

Keywords

Anomaly detection / Internet of things / Integrating data collection / Mobile edge users / Intelligent

Cite this article

Download citation ▾
Luying Wang, Lingyi Chen, Neal N. Xiong, Anfeng Liu, Tian Wang, Mianxiong Dong. An intelligent active probing and trace-back scheme for IoT anomaly detection. , 2024, 10(1): 168-181 DOI:10.1016/j.dcan.2023.06.007

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

F. Cauteruccio, L. Cinelli, E. Corradini, G. Terracina, D. Ursino, L. Virgili, C. Savaglio, A. Liotta, G. Fortino, A framework for anomaly detection and classification in multiple iot scenarios, Future Gener. Comput. Syst. 114 (2021) 322-335.

[2]

A.A. Cook, G. Misirli, Z. Fan, Anomaly detection for iot time-series data: a survey, IEEE Int. Things J. 7 (2020) 6481-6494.

[3]

Z. Xie, G. Huang, R. Zarei, Z. Ji, H. Ye, J. He, A novel nest-based scheduling method for mobile wireless body area networks, Digit. Commun. Netw. 6 (2020) 514-523.

[4]

B.S. Alsulami, C. Bajracharya, D.B. Rawat, Game theory-based attack and defense analysis in virtual wireless networks with jammers and eavesdroppers, Digit. Com-mun. Netw. 7 (2021) 327-334.

[5]

Y. Yang, S. Ding, Y. Liu, S. Meng, X. Chi, R. Ma, C. Yan, Fast wireless sensor anomaly detection based on data stream in edge computing enabled smart greenhouse, Digit. Commun. Netw. 8 (2021) 498-507.

[6]

F.T. Liu, K.M. Ting, Z.-H. Zhou, Isolation Forest, 2008, pp. 413-422.

[7]

F.T. Liu, K.M. Ting, Z.-H. Zhou, Isolation-based anomaly detection, ACM Trans. Knowl. Discov. Data 6 ( 2012) 3:1-3:39.

[8]

J. Guo, H. Wang, W. Liu, G. Huang, J. Gui, S. Zhang, A lightweight verifiable trust based data collection approach for sensor-cloud systems, J. Syst. Archit. 119 (2021) 102219.

[9]

H. Xiong, T. Yao, H. Wang, J. Feng, S. Yu, A survey of public-key encryption with search functionality for cloud-assisted iot, IEEE Int. Things J. 9 (2022) 401-418.

[10]

T. Wang, H. Luo, W. Jia, A. Liu, M. Xie, Mtes: an intelligent trust evaluation scheme in sensor-cloud-enabled industrial Internet of things, IEEE Trans. Ind. Inform. 16 (2020) 2054-2062.

[11]

L. Nie, W. Sun, S. Wang, Z. Ning, J.J.P.C. Rodrigues, Y. Wu, S. Li, Intrusion detection in green Internet of things: a deep deterministic policy gradient-based algorithm, IEEE Trans. Green Commun. Netw. 5 (2021) 778-788.

[12]

B. Marr, How much data do we create every day? The mind-blowing stats every-one should read, https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#23336edf60ba, 2018. (Accessed 13 November 2022).

[13]

A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden, H. Balakrishnan, S. Toledo, J. Eriksson, Vtrack: accurate, energy-aware road traffic delay estimation using mo-bile phones, in: ACM International Conference on Embedded Networked Sensor Systems, ACM, 2009, pp. 85-98.

[14]

N. Maisonneuve, M. Stevens, M.E. Niessen, L.L. Steels, Noisetube: measuring and mapping noise pollution with mobile phones, in: Information Technologies in Envi-ronmental Engineering, 2009, pp. 215-228.

[15]

M. Huang, A. Liu, N.N. Xiong, J. Wu, A uav-assisted ubiquitous trust communica-tion system in 5g and beyond networks, IEEE J. Sel. Areas Commun. 39 (2021) 3444-3458.

[16]

L. Chen, G. Li, G. Huang, A hypergrid based adaptive learning method for detecting data faults in wireless sensor networks, Inf. Sci. 553 (2021) 49-65.

[17]

J. Bai, J. Gui, G. Huang, S. Zhang, A. Liu, UAV-supported intelligent truth discovery to achieve low-cost communications in mobile crowd sensing, Digit. Commun. Netw.(2023) 2352-8648.

[18]

J. Zhang, M.Z.A. Bhuiyan, Y. Xu, A.K. Singh, D.F. Hsu, E. Luo, Trustworthy target tracking with collaborative deep reinforcement learning in edgeai-aided iot, IEEE Trans. Ind. Inform. 18 (2021) 1301-1309.

[19]

T. Li, W. Liu, Z. Zeng, N.N. Xiong, Drlr: a deep-reinforcement-learning-based recruit-ment scheme for massive data collections in 6g-based iot networks, IEEE Int. Things J. 9 (2022) 14595-14609.

[20]

M. Yu, A. Liu, N.N. Xiong, T. Wang, An intelligent game-based offloading scheme for maximizing benefits of iot-edge-cloud ecosystems, IEEE Int. Things J. 9 (2022) 5600-5616.

[21]

T. Wang, H. Luo, X. Zheng, M. Xie, Crowdsourcing mechanism for trust evaluation in cpcs based on intelligent mobile edge computing, ACM Trans. Intell. Syst. Technol. 10 (2019) 1-19.

[22]

Z. Cai, Z. Duan, W. Li, Exploiting multi-dimensional task diversity in distributed auctions for mobile crowdsensing, IEEE Trans. Mob. Comput. 20 (2021) 2576-2591.

[23]

Y. Liu, M. Dong, K. Ota, A. Liu, Activetrust: secure and trustable routing in wireless sensor networks, IEEE Trans. Inf. Forensics Secur. 11 (2016) 2013-2027.

[24]

M. Bonola, L. Bracciale, P. Loreti, R. Amici, A. Rabuffi, G. Bianchi, Opportunistic communication in smart city: experimental insight with small-scale taxi fleets as data carriers, Ad Hoc Netw. 43 (2016) 43-55.

[25]

D.M. Hawkins, Identification of outliers, in:Monographs on Applied Probability and Statistics, 1980.

[26]

S. Baek, D. Kwon, S.C. Suh, H. Kim, I. Kim, J. Kim, Clustering-based label estimation for network anomaly detection, Digit. Commun. Netw. 7 (2020) 37-44.

[27]

A. Kumar, K. Abhishek, M.R. Ghalib, A. Shankar, X. Cheng, Intrusion detection and prevention system for an iot environment, Digit. Commun. Netw. 8 (2022) 540-551.

[28]

X. Liu, M. Dong, K. Ota, L.T. Yang, A. Liu, Trace malicious source to guarantee cyber security for mass monitor critical infrastructure, J. Comput. Syst. Sci. 98 (2016) 1-26.

[29]

X. Zheng, Z. Cai, Privacy-preserved data sharing towards multiple parties in indus-trial iots, IEEE J. Sel. Areas Commun. 38 (2020) 968-979.

[30]

A. Das, S. Chakraborty, S. Chakraborty, Where do all my smart home data go?Context-aware data generation and forwarding for edge-based microservices over shared iot infrastructure, Future Gener. Comput. Syst. 134 (2022) 204-218.

[31]

M. Shen, A. Liu, G. Huang, N.N. Xiong, H. Lu, Attdc: an active and traceable trust data collection scheme for industrial security in smart cities, IEEE Int. Things J. 8 (2021) 6437-6453.

[32]

X. Xiang, J. Gui, N.N. Xiong, An integral data gathering framework for supervisory control and data acquisition systems in green iot, IEEE Trans. Green Commun. Netw. 5 (2021) 714-726.

[33]

Y. Liu, A. Liu, X. Liu, M. Ma, A trust-based active detection for cyber-physical secu-rity in industrial environments, IEEE Trans. Ind. Inform. 15 (2019) 6593-6603.

[34]

B.J. Frey, D. Dueck, Clustering by passing messages between data points, Science 315 (2007) 972-976.

AI Summary AI Mindmap
PDF

40

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/