Latency minimization for multiuser computation offloading in fog-radio access networks

Zhang Wei , Wang Shafei , Pan Ye , Li Qiang , Lin Jingran , Wu Xiaoxiao

›› 2025, Vol. 11 ›› Issue (1) : 160 -171.

PDF
›› 2025, Vol. 11 ›› Issue (1) : 160 -171. DOI: 10.1016/j.dcan.2023.05.011
Original article

Latency minimization for multiuser computation offloading in fog-radio access networks

Author information +
History +
PDF

Abstract

Recently, the Fog-Radio Access Network (F-RAN) has gained considerable attention, because of its flexible architecture that allows rapid response to user requirements. In this paper, computational offloading in F-RAN is considered, where multiple User Equipments (UEs) offload their computational tasks to the F-RAN through fog nodes. Each UE can select one of the fog nodes to offload its task, and each fog node may serve multiple UEs. The tasks are computed by the fog nodes or further offloaded to the cloud via a capacity-limited fronhaul link. In order to compute all UEs' tasks quickly, joint optimization of UE-Fog association, radio and computation resources of F-RAN is proposed to minimize the maximum latency of all UEs. This min-max problem is formulated as a Mixed Integer Nonlinear Program (MINP). To tackle it, first, MINP is reformulated as a continuous optimization problem, and then the Majorization Minimization (MM) method is used to find a solution. The MM approach that we develop is unconventional in that each MM subproblem is solved inexactly with the same provable convergence guarantee as the exact MM, thereby reducing the complexity of MM iteration. In addition, a cooperative offloading model is considered, where the fog nodes compress-and-forward their received signals to the cloud. Under this model, a similar min-max latency optimization problem is formulated and tackled by the inexact MM. Simulation results show that the proposed algorithms outperform some offloading strategies, and that the cooperative offloading can exploit transmission diversity better than noncooperative offloading to achieve better latency performance.

Keywords

Fog-radio access network / Fog computing / Majorization minimization / WMMSE

Cite this article

Download citation ▾
Zhang Wei, Wang Shafei, Pan Ye, Li Qiang, Lin Jingran, Wu Xiaoxiao. Latency minimization for multiuser computation offloading in fog-radio access networks. , 2025, 11(1): 160-171 DOI:10.1016/j.dcan.2023.05.011

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

The data of this work can be available through the request for the corresponding authors by e-mail.

Acknowledgement

This work is supported in part by the Natural Science Foundation of China (62171110, U19B2028 and U20B2070).

References

[1]

M. Chiang, T. Zhang, Fog and IoT: an overview of research opportunities, IEEE Int. Things J. 3 (6) (2016) 854-864.

[2]

M. Peng, S. Yan, K. Zhang, C. Wang, Fog-computing-based radio access networks: issues and challenges, IEEE Netw. 30 (4) (2016) 46-53.

[3]

F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog computing and its role in the Internet of things, in: Proc. ACM SIGCOMM Workshop on Mobile Cloud Computing, ACM, 2012, pp. 13-16.

[4]

P. Mach, Z. Becvar, Mobile edge computing: a survey on architecture and computa-tion offloading, IEEE Commun. Surv. Tutor. 19 (3) (2017) 1628-1656.

[5]

M. Maray, J. Shuja, Computation offloading in mobile cloud computing and mobile edge computing: survey, taxonomy, and open issues, Mob. Inf. Syst. 2022 ( 2022) 1-17.

[6]

S. Nayak, R. Patgiri, L. Waikhom, A. Ahmed, A review on edge analytics: issues, challenges, opportunities, promises, future directions, and applications, Digit. Com-mun. Netw. (2022), https://doi.org/10.1016/j.dcan.2022.05.029.

[7]

K. Sadatdiynov, L. Cui, L. Zhang, J.Z. Huang, S. Salloum, M.S. Mahmud, A review of optimization methods for computation offloading in edge computing networks, Digit. Commun. Netw. (2022), https://doi.org/10.1016/j.dcan.2022.03.003.

[8]

M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, R. Govindan Odessa,En-abling interactive perception applications on mobile devices, in:Proc. 9th Int. Conf. Mobile Syst., Appl., Services, 2011, pp. 43-56.

[9]

W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, D.O. Wu, Energy-optimal mobile cloud computing under stochastic wireless channel, IEEE Trans. Wirel. Commun. 12 (9) (2013) 4569-4581.

[10]

W. Zhang, Y. Wen, D.O. Wu, Collaborative task execution in mobile cloud computing under a stochastic wireless channel, IEEE Trans. Wirel. Commun. 14 (1) (2015) 81-93.

[11]

X. Chen, Y. Cai, Q. Shi, M. Zhao, G. Yu, Energy-efficient resource allocation for latency-sensitive mobile edge computing, in: IEEE VTC-Fall, 2018, pp. 1-5.

[12]

X. Lyu, H. Tian, W. Ni, Y. Zhang, P. Zhang, R. Liu, Energy-efficient admission of delay-sensitive tasks for mobile edge computing, IEEE Trans. Commun. 66 (6) (2018) 2603-2616.

[13]

F. Wang, J. Xu, X. Wang, S. Cui, Joint offloading and computing optimization in wireless powered mobile-edge computing systems, IEEE Trans. Wirel. Commun. 17 (3) (2018) 1784-1797.

[14]

J. Tang, W.P. Tay, T.Q.S. Quek, Cross-layer resource allocation with elastic service scaling in cloud radio access network, IEEE Trans. Wirel. Commun. 14 (9) (2015) 5068-5081.

[15]

J. Tang, W.P. Tay, T.Q.S. Quek, B. Liang, System cost minimization in cloud ran with limited fronthaul capacity, IEEE Trans. Wirel. Commun. 16 (5) (2017) 3371-3384.

[16]

Q. Liu, T. Han, N. Ansari, Joint radio and computation resource management for low latency mobile edge computing, in: IEEE Globecom, IEEE, 2018, pp. 1-7.

[17]

Y.C.J. Ren, G. Yu, Y. He, Latency optimization for resource allocation in mobile-edge computation offloading, IEEE Trans. Wirel. Commun. 17 (8) (2018) 5506-5519.

[18]

J. Du, L. Zhao, X. Chu, F. Yu, J. Feng, I. Chih-Lin, Enabling low-latency applica-tions in LTE-A based mixed fog/cloud computing systems, IEEE Trans. Veh. Technol. 68 (2) (2019) 1757-1771.

[19]

U. Saleem, Y. Liu, S. Jangsher, X. Tao, Y. Li, Latency minimization for D2D-enabled partial computation offloading in mobile edge computing, IEEE Trans. Veh. Technol. 69 (4) (2020) 4472-4486.

[20]

Z. Kuang, Z. Ma, Z. Li, X. Deng, Cooperative computation offloading and resource allocation for delay minimization in mobile edge computing, J. Syst. Archit. 118 (2021) 102167.

[21]

Y. Li, T. Wang, Y. Wu, W. Jia, Optimal dynamic spectrum allocation-assisted latency minimization for multiuser mobile edge computing, Digit. Commun. Netw. 8 (3) (2022) 247-256.

[22]

T.X. Tran, D. Pompili, Joint task offloading and resource allocation for multi-server mobile-edge computing networks, IEEE Trans. Veh. Technol. 68 (1) (2019) 856-868.

[23]

J. Du, L. Zhao, J. Feng, X. Chu, Computation offloading and resource allocation in mixed fog/cloud computing systems with min-max fairness guarantee, IEEE Trans. Commun. 66 (4) (2018) 1594-1608.

[24]

M.-H. Chen, M. Dong, B. Liang, Resource sharing of a computing access point for multi-user mobile cloud offloading with delay constraints, IEEE Trans. Mob. Com-put. 17 (12) (2018) 2868-2881.

[25]

Y. Liu, F. Yu, X. Li, H. Ji, C.-M. Leung, Distributed resource allocation and compu-tation offloading in fog and cloud networks with non-orthogonal multiple access, IEEE Trans. Veh. Technol. 67 (12) (2018) 12137-12151.

[26]

S. Liu, Y. Yu, L. Guo, P.L. Yeoh, B. Vucetic, Y. Li, Adaptive delay-energy balanced partial offloading strategy in mobile edge computing networks, Digit. Commun. Netw. (2022), https://doi.org/10.1016/j.dcan.2022.05.029.

[27]

T. Chen, Q. Ling, Y. Shen, G. Giannakis, Heterogeneous online learning for “thing-adaptive” fog computing in IoT, IEEE Int. Things J. 5 (6) (2018) 4328-4341.

[28]

Y. Dong, X. Jiang, H. Zhou, Y. Lin, Q. Shi, SR2CNN: zero-shot learning for signal recognition, IEEE Trans. Signal Process. 69 (2021) 2316-2329.

[29]

Y. Lin, Y. Tu, Z. Dou, L. Chen, S. Mao, Contour Stella image and deep learning for signal recognition in the physical layer, IEEE Trans. Cogn. Commun. Netw. 7 (1) (2021) 34-46.

[30]

Y. Tu, Y. Lin, H. Zha, Large-scale real-world radio signal recognition with deep learning, Chin. J. Aeronaut. 35 (9) (2022) 35-48.

[31]

Y. Li, S. Xia, M. Zheng, B. Cao, Q. Liu, Lyapunov optimization-based trade-off policy for mobile cloud offloading in heterogeneous wireless networks, IEEE Trans. Cloud Comput. 10 (1) (2022) 491-505.

[32]

S. Xia, Z. Yao, Y. Li, S. Mao, Online distributed offloading and computing resource management with energy harvesting for heterogeneous mec-enabled iot, IEEE Trans. Wirel. Commun. 20 (10) (2021) 6743-6757.

[33]

Y. Li, H. Ma, L. Wang, S. Mao, G. Wang, Optimized content caching and user associ-ation for edge computing in densely deployed heterogeneous networks, IEEE Trans. Mob. Comput. 21 (6) (2022) 2130-2142.

[34]

D.R. Hunter, K. Lange, A tutorial on MM algorithms, Am. Stat. 58 (12) (2004) 30-37.

[35]

Q. Shi, M. Razaviyayn, Z.-Q. Luo, C. He, An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel, IEEE Trans. Signal Process. 59 (9) (2011) 4331-4340.

[36]

S. Sardellitti, G. Scutari, S. Barbarossa, Joint optimization of radio and computa-tional resources for multicell mobile-edge computing, IEEE Trans. Signal Inf. Pro-cess. Netw. 1 (2) (2015) 89-103.

[37]

M. Salmani, T.N. Davidson,Multiple access computational offloading with compu-tation constraints, in: IEEE Workshop on Sig,in:Proc. Adv. in Wireless Commun., IEEE, 2017, pp. 385-389.

[38]

S. Mostafa, C.W. Sung, Y. Guo, Joint computation and communication resource al-location with NOMA and OMA offloading for multi-server systems in F-RAN, IEEE Access 10 (2022) 24456-24466.

[39]

T.-C. Chiu, W.-H. Chung, A.-C. Pang, Y.-J. Yu, P.-H. Yen, Ultra-low latency service provision in 5G fog-radio access networks, in: Proc. IEEE PIMRC, 2016, pp. 1-6.

[40]

A.-C. Pang, W.-H. Chung, T.-C. Chiu, J. Zhang, Latency-driven cooperative task computing in multi-user fog-radio access networks, in: IEEE 37th International Con-ference on Distributed Computing Systems, 2017, pp. 615-624.

[41]

Y. Pan, H. Jiang, H. Zhu, J. Wang,Latency minimization for task offloading in hi-erarchical fog-computing c-ran networks, in: ICC 2020-2020 IEEE International Conference on Communications (ICC), 2020, pp. 1-6.

[42]

J. Tan, T.-H. Chang, K. Guo, T. Quek, Robust computation offloading in fog radio access network with fronthaul compression, IEEE Trans. Wirel. Commun. 20 (10) (2021) 6506-6521.

[43]

Z. Zhao, S. Bu, T. Zhao, Z. Yin, M. Peng, Z. Ding, T.Q.S. Quek, On the design of computation offloading in fog radio access networks, IEEE Trans. Veh. Technol. 68 (7) (2019) 7136-7149.

[44]

K. Guo, M. Sheng, T.Q.S. Quek, Z. Qiu, Task offloading and scheduling in fog ran: a parallel communication and computation perspective, IEEE Wirel. Commun. Lett. 9 (2) (2020) 215-218.

[45]

Q.D. La, M.V. Ngo, T.Q. Dinh, T.Q. Quek, H. Shin, Enabling intelligence in fog com-puting to achieve energy and latency reduction, Digit. Commun. Netw. 5 (1) (2019) 3-9.

[46]

Y. Ma, H. Wang, J. Xiong, J. Diao, D. Ma, Joint allocation on communication and computing resources for fog radio access networks, IEEE Access 8 (2020) 108310-108323.

[47]

H. Hu, J. Zhang, Y. Jiang, Z. Li, Q. Chen, J. Zhang, Computation offloading analysis in clustered fog radio access networks with repulsion, IEEE Trans. Veh. Technol. 70 (10) (2021) 10804-10819.

[48]

Z. Zhao, C. Feng, H.H. Yang, X. Luo, Federated-learning-enabled intelligent fog radio access networks: fundamental theory, key techniques, and future trends, IEEE Wirel. Commun. 27 (2) (2020) 22-28.

[49]

G.M.S. Rahman, T. Dang, M. Ahmed, Deep reinforcement learning based computa-tion offloading and resource allocation for low-latency fog radio access networks, Intell. Converg. Netw. 1 (3) (2020) 243-257.

[50]

H. Lee, J. Kim, S.-H. Park, Learning optimal fronthauling and decentralized edge computation in fog radio access networks, IEEE Trans. Wirel. Commun. 20 (9) (2021) 5599-5612.

[51]

F. Jiang, X. Zhu, C. Sun,Double dqn based computing offloading scheme for fog radio access networks, in:2021 IEEE/CIC International Conference on Communica-tions in China (ICCC), 2021, pp. 1131-1136.

[52]

L. Zhang, Y. Jiang, F.-C. Zheng, M. Bennis, X. You,Computation offloading and resource allocation in f-rans: a federated deep reinforcement learning approach, in: 2022 IEEE International Conference on Communications Workshops (ICC Work-shops), 2022, pp. 97-102.

[53]

M. Xu, Z. Zhao, M. Peng, Z. Ding, T.Q.S. Quek, W. Bai,Performance analysis of computation offloading in fog-radio access networks, in: ICC 2019-2019 IEEE In-ternational Conference on Communications (ICC), 2019, pp. 1-6.

[54]

J. Jijin, B.-C. Seet, P.H.J. Chong, Performance analysis of opportunistic fog based radio access networks, IEEE Access 8 (2020) 225191-225200.

[55]

Q. Ren, K. Liu, L. Zhang, Multi-objective optimization for task offloading based on network calculus in fog environments, Digit. Commun. Netw. (2021), https://doi.org/10.1016/j.dcan.2021.09.012.

[56]

T.H.L. Dinh, M. Kaneko, E.H. Fukuda, L. Boukhatem, Energy efficient resource allo-cation optimization in fog radio access networks with outdated channel knowledge, IEEE Trans. Green Commun. Netw. 5 (1) (2021) 146-159.

[57]

X. Liu, H. Zhang, K. Long, A. Nallanathan, V.C.M. Leung, Energy efficient user as-sociation, resource allocation and caching deployment in fog radio access networks, IEEE Trans. Veh. Technol. 71 (2) (2022) 1846-1856.

[58]

H. Zhao, J. Tang, B. Adebisi, T. Ohtsuki, G. Gui, H. Zhu, An adaptive vehicle clus-tering algorithm based on power minimization in vehicular ad-hoc networks, IEEE Trans. Veh. Technol. 71 (3) (2022) 2939-2948.

[59]

Y. Jiang, C. Wan, M. Tao, F.-C. Zheng, P. Zhu, X. Gao, X. You, Analysis and optimiza-tion of fog radio access networks with hybrid caching: delay and energy efficiency, IEEE Trans. Wirel. Commun. 20 (1) (2021) 69-82.

[60]

A. Bani-Bakr, M.N. Hindia, K. Dimyati, Z.B. Zawawi, T.F. Tengku, Mohmed Noor Izam, caching and multicasting for fog radio access networks, IEEE Access 10 (2022) 1823-1838.

[61]

Z. Wang, Y. Sun, S. Yuan, Intelligent radio access networks: architectures, key tech-niques, and experimental platforms, Front Inform. Technol. Electron. Eng. 23 (2022) 5-18.

[62]

M. Grant, S. Boyd, CVX: Matlab software for disciplined convex programming [On-line]. Available: http://cvxr.com/cvx, Mar. 2014.

[63]

Y. Zhou, W. Yu, Fronthaul compression and transmit beamforming optimization for multi-antenna uplink C-RAN, IEEE Trans. Signal Process. 64 (16) (2016) 4138-4151.

[64]

Q. Li, M. Hong, H.-T. Wai, Y. Liu, W.-K. Ma, Z.-Q. Luo, Transmit solutions for MIMO wiretap channels using alternating optimization, IEEE J. Sel. Areas Commun. 31 (9) (2013) 1714-1727.

[65]

D. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont, MA, 1999.

AI Summary AI Mindmap
PDF

286

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/