A survey on semantic communications: Technologies, solutions, applications and challenges

Yating Liu , Xiaojie Wang , Zhaolong Ning , MengChu Zhou , Lei Guo , Behrouz Jedari

›› 2024, Vol. 10 ›› Issue (3) : 528 -545.

PDF
›› 2024, Vol. 10 ›› Issue (3) :528 -545. DOI: 10.1016/j.dcan.2023.05.010
Research article
research-article

A survey on semantic communications: Technologies, solutions, applications and challenges

Author information +
History +
PDF

Abstract

Semantic Communication (SC) has emerged as a novel communication paradigm that provides a receiver with meaningful information extracted from the source to maximize information transmission throughput in wireless networks, beyond the theoretical capacity limit. Despite the extensive research on SC, there is a lack of comprehensive survey on technologies, solutions, applications, and challenges for SC. In this article, the development of SC is first reviewed and its characteristics, architecture, and advantages are summarized. Next, key technologies such as semantic extraction, semantic encoding, and semantic segmentation are discussed and their corresponding solutions in terms of efficiency, robustness, adaptability, and reliability are summarized. Applications of SC to UAV communication, remote image sensing and fusion, intelligent transportation, and healthcare are also presented and their strategies are summarized. Finally, some challenges and future research directions are presented to provide guidance for further research of SC.

Keywords

Semantic communication / Semantic coding / Semantic extraction / Semantic communication framework / Semantic communication applications

Cite this article

Download citation ▾
Yating Liu, Xiaojie Wang, Zhaolong Ning, MengChu Zhou, Lei Guo, Behrouz Jedari. A survey on semantic communications: Technologies, solutions, applications and challenges. , 2024, 10(3): 528-545 DOI:10.1016/j.dcan.2023.05.010

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Q. Qi, X. Chen, A. Khalili, C. Zhong, Z. Zhang, D.W.K. Ng, Integrating sensing, computing, and communication in 6G wireless networks: design and optimization, IEEE Trans. Commun. 70 (9) (2022) 6212-6227.

[2]

X. Luo, H.-H. Chen, Q. Guo, Semantic communications: overview, open issues, and future research directions, IEEE Wirel. Commun. 29 (1) (2022) 210-219.

[3]

E. Calvanese Strinati, S. Barbarossa, 6G networks: beyond Shannon towards se-mantic and goal-oriented communications, Comput. Netw. 190 (2021) 107930.

[4]

B. Chen, Q. Cao, M. Hou, Z. Zhang, G. Lu, D. Zhang, Multimodal emotion recog-nition with temporal and semantic consistency, IEEE/ACM Trans. Audio Speech Lang. Process. 29 (2021) 3592-3603.

[5]

Q. Chen, G. Huang, Y. Wang, The weighted cross-modal attention mechanism with sentiment prediction auxiliary task for multimodal sentiment analysis, IEEE/ACM Trans. Audio Speech Lang. Process. 30 (2022) 2689-2695.

[6]

M. Chen, Y. Wang, H.V. Poor,Performance optimization for wireless semantic communications over energy harvesting networks, in: ICASSP 2022-2022 IEEE In-ternational Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022, pp. 8647-8651.

[7]

X. Kang, B. Song, J. Guo, Z. Qin, F.R. Yu, Task-oriented image transmission for scene classification in unmanned aerial systems, IEEE Trans. Commun. 70 (8)(2022) 5181-5192.

[8]

H. Tong, Z. Yang, S. Wang, Y. Hu, W. Saad, C. Yin, Federated learning based audio semantic communication over wireless networks, in: 2021 IEEE Global Communi-cations Conference (GLOBECOM), 2021, pp. 1-6.

[9]

H. Xie, Z. Qin, A lite distributed semantic communication system for Internet of things, IEEE J. Sel. Areas Commun. 39 (1) (2021) 142-153.

[10]

S. Jiang, Y. Liu, Y. Zhang, P. Luo, K. Cao, J. Xiong, H. Zhao, J. Wei, Reliable se-mantic communication system enabled by knowledge graph, Entropy 24 (6) (2022) 846.

[11]

Y. Wang, X. Ou, J. Liang, Z. Sun, Deep semantic reconstruction hashing for simi-larity retrieval, IEEE Trans. Circuits Syst. Video Technol. 31 (1) (2021) 387-400.

[12]

C.E. Shannon, A mathematical theory of communication, Mob. Comput. Commun. Rev. 5(1) (2001) 3-55.

[13]

K. Lu, Q. Zhou, R. Li, Z. Zhao, X. Chen, J. Wu, H. Zhang, Rethinking modern communication from semantic coding to semantic communication, IEEE Wirel. Commun. 30 (1) (2023) 158-164.

[14]

D. Van Huynh, S.R. Khosravirad, A. Masaracchia, O.A. Dobre, T.Q. Duong, Edge intelligence-based ultra-reliable and low-latency communications for digital twin-enabled metaverse, IEEE Wirel. Commun. Lett. 11 (8) (2022) 1733-1737.

[15]

H. Xu, P.V. Klaine, O. Onireti, B. Cao, M. Imran, L. Zhang, Blockchain-enabled resource management and sharing for 6G communications, Digit. Commun. Netw. 6(3) (2020) 261-269.

[16]

C. Ding, I.W.-H. Ho, Digital-twin-enabled city-model-aware deep learning for dy-namic channel estimation in urban vehicular environments, IEEE Trans. Green Commun. Netw. 6(3) (2022) 1604-1612.

[17]

J. Du, C. Jiang, A. Benslimane, S. Guo, Y. Ren, SDN-based resource allocation in edge and cloud computing systems: an evolutionary Stackelberg differential game approach, IEEE/ACM Trans. Netw. 30 (4) (2022) 1613-1628.

[18]

Z. Ning, P. Dong, X. Kong, F. Xia, A cooperative partial computation offloading scheme for mobile edge computing enabled Internet of things, IEEE Int. Things J. 6(3) (2019) 4804-4814.

[19]

G. Shi, Y. Xiao, Y. Li, X. Xie, From semantic communication to semantic-aware networking: model, architecture, and open problems, IEEE Commun. Mag. 59 (8)(2021) 44-50.

[20]

Y. Liu, S. Jiang, Y. Zhang, K. Cao, L. Zhou, B.-C. Seet, H. Zhao, J. Wei, Extended context-based semantic communication system for text transmission, Digit. Com-mun. Netw., https://doi.org/10.1016/j.dcan.2022.09.023.

[21]

Y. Zhang, H. Zhao, K. Cao, L. Zhou, Z. Wang, Y. Liu, J. Wei, A highly reliable encoding and decoding communication framework based on semantic information, Digit. Commun. Netw., https://doi.org/10.1016/j.dcan.2023.04.002.

[22]

Y. Wang, M. Chen, T. Luo, W. Saad, D. Niyato, H.V. Poor, S. Cui, Performance opti-mization for semantic communications: an attention-based reinforcement learning approach, IEEE J. Sel. Areas Commun. 40 (9) (2022) 2598-2613.

[23]

M. Sana, E.C. Strinati,Learning semantics: an opportunity for effective 6G commu-nications, in: 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC), 2022, pp. 631-636.

[24]

L. Yan, Z. Qin, R. Zhang, Y. Li, G.Y. Li, Resource allocation for text semantic com-munications, IEEE Wirel. Commun. Lett. 11 (7) (2022) 1394-1398.

[25]

S. Iyer, R. Khanai, D. Torse, R.J. Pandya, K.M. Rabie, K. Pai, W.U. Khan, Z. Fadlul-lah, A survey on semantic communications for intelligent wireless networks, Wirel. Pers. Commun. 129 (1) (2023) 569-611.

[26]

P. Zhang, W. Xu, H. Gao, K. Niu, X. Xu, X. Qin, C. Yuan, Z. Qin, H. Zhao, J. Wei, F. Zhang,Toward wisdom-evolutionary and primitive-concise 6G: a new paradigm of semantic communication networks, Engineering 8 (2022) 60-73.

[27]

A.S. Patel, R. Vyas, O.P. Vyas, M. Ojha, A study on video semantics; overview, challenges, and applications, Multimed. Tools Appl. 81 (5) (2022) 6849-6897.

[28]

M. Kalfa, M. Gok, A. Atalik, B. Tegin, T.M. Duman, O. Arikan, Towards goal-oriented semantic signal processing: applications and future challenges, Digit. Signal Process. 119 (2021) 103134.

[29]

X. Luo, H.-H. Chen, Q. Guo, Semantic communications: overview, open issues, and future research directions, IEEE Wirel. Commun. 29 (1) (2022) 210-219.

[30]

H. Rahman, M.I. Hussain, A comprehensive survey on semantic interoperability for Internet of things: state-of-the-art and research challenges, Trans. Emerging Telecommun. Technol. 31 (12) (2020) e3902.

[31]

W. Yang, H. Du, Z.Q. Liew, W.Y.B. Lim, Z. Xiong, D. Niyato, X. Chi, X. Shen, C. Miao, Semantic communications for future Internet: fundamentals, applications, and challenges, IEEE Commun. Surv. Tutor. 25 (1) (2023) 213-250.

[32]

Z. Qin, X. Tao, J. Lu, W. Tong, G.Y. Li, Semantic communications: principles and challenges, arXiv :2201.01389, 2022.

[33]

Q. Zhou, R. Li, Z. Zhao, C. Peng, H. Zhang, Semantic communication with adaptive universal transformer, IEEE Wirel. Commun. Lett. 11 (3) (2022) 453-457.

[34]

H. Xie, Z. Qin, G.Y. Li, Task-oriented multi-user semantic communications for VQA, IEEE Wirel. Commun. Lett. 11 (3) (2022) 553-557.

[35]

H. Xie, Z. Qin, G.Y. Li, B.-H. Juang, Deep learning enabled semantic communica-tion systems, IEEE Trans. Signal Process. 69 (2021) 2663-2675.

[36]

S. Yao, K. Niu, S. Wang, J. Dai, Semantic coding for text transmission: an iterative design, IEEE Trans. Cogn. Commun. Netw. 8(4) (2022) 1594-1603.

[37]

J. Dai, P. Zhang, K. Niu, S. Wang, Z. Si, X. Qin, Communication beyond trans-mitting bits: semantics-guided source and channel coding, IEEE Wirel. Commun.(2022) 1-8.

[38]

Z. Weng, Z. Qin, Semantic communication systems for speech transmission, IEEE J. Sel. Areas Commun. 39 (8) (2021) 2434-2444.

[39]

D. Huang, X. Tao, F. Gao, J. Lu, Deep learning-based image semantic coding for semantic communications, in: 2021 IEEE Global Communications Conference (GLOBECOM), 2021, pp. 1-6.

[40]

S. Sun, T. He, Z. Chen, Semantic structured image coding framework for multiple intelligent applications, IEEE Trans. Circuits Syst. Video Technol. 31 (9) (2021) 3631-3642.

[41]

Q. Zhou, R. Li, Z. Zhao, Y. Xiao, H. Zhang, Adaptive bit rate control in semantic communication with incremental knowledge-based HARQ, IEEE Open J. Commun. Soc. 3 (2022) 1076-1089.

[42]

Y. Feng, X. Sun, W. Diao, J. Li, X. Gao, Double similarity distillation for semantic image segmentation, IEEE Trans. Image Process. 30 (2021) 5363-5376.

[43]

C. Xing, Y. Jing, S. Wang, S. Ma, H.V. Poor, New viewpoint and algorithms for water-filling solutions in wireless communications, IEEE Trans. Signal Process. 68 (2020) 1618-1634.

[44]

P. Du, H. Lei, I.S. Ansari, J. Du, X. Chu, Distributionally robust optimization based chance-constrained energy management for hybrid energy powered cellular net-works, Digit. Commun. Netw. 9(3) (2023) 797-808.

[45]

H. Xie, Z. Qin, G.Y. Li, B.-H. Juang,Deep learning based semantic communications: an initial investigation, in: GLOBECOM 2020-2020 IEEE Global Communications Conference, 2020, pp. 1-6.

[46]

Z. Weng, Z. Qin, G.Y. Li, Semantic communications for speech recognition, in: 2021 IEEE Global Communications Conference (GLOBECOM), 2021, pp. 1-6.

[47]

B. Fan, J. Zhou, W. Feng, H. Pu, Y. Yang, Q. Kong, F. Wu, H. Liu, Learning semantic-aware local features for long term visual localization, IEEE Trans. Image Process. 31 (2022) 4842-4855.

[48]

H. Xu, W. He, L. Zhang, H. Zhang, Unsupervised spectral-spatial semantic feature learning for hyperspectral image classification, IEEE Trans. Geosci. Remote Sens. 60 (2022) 1-14.

[49]

F. Zhou, Y. Li, X. Zhang, Q. Wu, X. Lei, R.Q. Hu,Cognitive semantic communication systems driven by knowledge graph, in: ICC 2022 -IEEE International Conference on Communications, 2022, pp. 4860-4865.

[50]

Y. Zhang, H. Zhao, J. Wei, J. Zhang, M.F. Flanagan, J. Xiong, Context-based seman-tic communication via dynamic programming, IEEE Trans. Cogn. Commun. Netw. 8(3) (2022) 1453-1467.

[51]

W.J. Yun, B. Lim, S. Jung, Y.-C. Ko, J. Park, J. Kim, M. Bennis,Attention-based re-inforcement learning for real-time UAV semantic communication, in:2021 17th International Symposium on Wireless Communication Systems (ISWCS), 2021, pp. 1-6.

[52]

C. Yu, M. Zhao, M. Song, Y. Wang, F. Li, R. Han, C.-I. Chang, Hyperspectral image classification method based on CNN architecture embedding with hashing semantic feature, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 12 (6) (2019) 1866-1881.

[53]

F. Hu, G.-S. Xia, W. Yang, L. Zhang, Mining deep semantic representations for scene classification of high-resolution remote sensing imagery, IEEE Trans. Big Data 6(3)(2020) 522-536.

[54]

B. Fan, J. Zhou, W. Feng, H. Pu, Y. Yang, Q. Kong, F. Wu, H. Liu, Learning semantic-aware local features for long term visual localization, IEEE Trans. Image Process. 31 (2022) 4842-4855.

[55]

Z. Chen, Y. Fu, Y. Zhang, Y.-G. Jiang, X. Xue, L. Sigal, Multi-level semantic fea-ture augmentation for one-shot learning, IEEE Trans. Image Process. 28 (9) (2019) 4594-4605.

[56]

F. Zhuang, X. Li, X. Jin, D. Zhang, L. Qiu, Q. He, Semantic feature learning for heterogeneous multitask classification via non-negative matrix factorization, IEEE Trans. Cybern. 48 (8) (2018) 2284-2293.

[57]

D. Gu, S. Ma, S. Cai, DSSF: dynamic semantic sampling and fusion for one-stage human-object interaction detection, IEEE Trans. Instrum. Meas. 71 (2022) 1-13.

[58]

M. Noura, A. Gyrard, S. Heil, M. Gaedke, Automatic knowledge extraction to build semantic web of things applications, IEEE Int. Things J. 6(5) (2019) 8447-8454.

[59]

J. Qiu, Y. Chai, Z. Tian, X. Du, M. Guizani, Automatic concept extraction based on semantic graphs from big data in smart city, IEEE Trans. Comput. Soc. Syst. 7(1)(2020) 225-233.

[60]

Q. Bi, K. Qin, H. Zhang, G.-S. Xia, Local semantic enhanced convnet for aerial scene recognition, IEEE Trans. Image Process. 30 (2021) 6498-6511.

[61]

C. Shao, L. Zhang, W. Pan, Faster R-CNN learning-based semantic filter for geome-try estimation and its application in vslam systems, IEEE Trans. Intell. Transp. Syst. 23 (6) (2022) 5257-5266.

[62]

A. Xiong, D. Liu, H. Tian, Z. Liu, P. Yu, M. Kadoch, News keyword extraction algo-rithm based on semantic clustering and word graph model, Tsinghua Sci. Technol. 26 (6) (2021) 886-893.

[63]

X. Liu, Q. Chen, X. Wu, Y. Hua, J. Chen, D. Li, B. Tang, X. Wang, Gated semantic difference based sentence semantic equivalence identification, IEEE/ACM Trans. Audio Speech Lang. Process. 28 (2020) 2770-2780.

[64]

J. Zhang, X. Liu, Z. Wang, H. Yang, Graph-based object semantic refinement for visual emotion recognition, IEEE Trans. Circuits Syst. Video Technol. 32 (5) (2022) 3036-3049.

[65]

R. Qu, Y. Fang, W. Bai, Y. Jiang, Computing semantic similarity based on novel models of semantic representation using Wikipedia, Inf. Process. Manag. 54 (6)(2018) 1002-1021.

[66]

Z. Quan, Z.-J. Wang, Y. Le, B. Yao, K. Li, J. Yin, An efficient framework for sentence similarity modeling, IEEE/ACM Trans. Audio Speech Lang. Process. 27 (4) (2019) 853-865.

[67]

Y. Chen, X. Lu, Deep category-level and regularized hashing with global semantic similarity learning, IEEE Trans. Cybern. 51 (12) (2021) 6240-6252.

[68]

M. Lin, R. Ji, S. Chen, X. Sun, C.-W. Lin, Similarity-preserving linkage hashing for online image retrieval, IEEE Trans. Image Process. 29 (2020) 5289-5300.

[69]

G. Zhu, C.A. Iglesias, Computing semantic similarity of concepts in knowledge graphs, IEEE Trans. Knowl. Data Eng. 29 (1) (2017) 72-85.

[70]

J. Dai, S. Wang, K. Tan, Z. Si, X. Qin, K. Niu, P. Zhang, Nonlinear transform source-channel coding for semantic communications, IEEE J. Sel. Areas Commun. 40 (8)(2022) 2300-2316.

[71]

P. Jiang, C.-K. Wen, S. Jin, G.Y. Li, Deep source-channel coding for sentence se-mantic transmission with HARQ, IEEE Trans. Commun. 70 (8) (2022) 5225-5240.

[72]

X. Li, J. Shi, Z. Chen, Task-driven semantic coding via reinforcement learning, IEEE Trans. Image Process. 30 (2021) 6307-6320.

[73]

J. Wu, C. Wu, Y. Lin, T. Yoshinaga, L. Zhong, X. Chen, Y. Ji, Semantic segmentation-based semantic communication system for image transmission, Digit. Commun. Netw., https://doi.org/10.1016/j.dcan.2023.02.006.

[74]

S. Saha, M. Shahzad, L. Mou, Q. Song, X.X. Zhu, Unsupervised single-scene seman-tic segmentation for earth observation, IEEE Trans. Geosci. Remote Sens. 60 (2022) 1-11.

[75]

G. Chen, X. Zhang, Q. Wang, F. Dai, Y. Gong, K. Zhu, Symmetrical dense-shortcut deep fully convolutional networks for semantic segmentation of very-high-resolution remote sensing images, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11 (5) (2018) 1633-1644.

[76]

S. Sun, S. Dustdar, R. Ranjan, G. Morgan, Y. Dong, L. Wang, Remote sensing image interpretation with semantic graph-based methods: a survey, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 15 (2022) 4544-4558.

[77]

C. Geiß, Y. Zhu, C. Qiu, L. Mou, X.X. Zhu, H. Taubenböck, Deep relearning in the geospatial domain for semantic remote sensing image segmentation, IEEE Geosci. Remote Sens. Lett. 19 (2022) 1-5.

[78]

Q. Zhou, X. Wu, S. Zhang, B. Kang, Z. Ge, L. Jan Latecki, Contextual ensemble network for semantic segmentation, Pattern Recognit. 122 (2022) 108290.

[79]

T. Wu, S. Tang, R. Zhang, J. Cao, Y. Zhang, CGNet: a light-weight context guided network for semantic segmentation, IEEE Trans. Image Process. 30 (2021) 1169-1179.

[80]

Y. Liu, Y. Chen, P. Lasang, Q. Sun, Covariance attention for semantic segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 44 (4) (2022) 1805-1818.

[81]

Q. Sun, Z. Zhang, P. Li, Second-order encoding networks for semantic segmenta-tion, Neurocomputing 445 (2021) 50-60.

[82]

Y. Tian, S. Zhu, Partial domain adaptation on semantic segmentation, IEEE Trans. Circuits Syst. Video Technol. 32 (6) (2022) 3798-3809.

[83]

Z. Huang, C. Wang, X. Wang, W. Liu, J. Wang, Semantic image segmentation by scale-adaptive networks, IEEE Trans. Image Process. 29 (2020) 2066-2077.

[84]

R. Liu, L. Mi, Z. Chen AFNet, Adaptive fusion network for remote sensing image se-mantic segmentation, IEEE Trans. Geosci. Remote Sens. 59 (9) (2021) 7871-7886.

[85]

S. Xiang, Q. Xie, M. Wang, Semantic segmentation for remote sensing images based on adaptive feature selection network, IEEE Geosci. Remote Sens. Lett. 19 (2022) 1-5.

[86]

Y. Tang, N. Zhou, Q. Yu, D. Wu, C. Hou, G. Tao, M. Chen, Intelligent fabric en-abled 6G semantic communication system for in-cabin scenarios, IEEE Trans. Intell. Transp. Syst. 24 (1) (2023) 1153-1162.

[87]

H. Hu, X. Zhu, F. Zhou, W. Wu, R.Q. Hu, H. Zhu, One-to-many semantic commu-nication systems: design, implementation, performance evaluation, IEEE Commun. Lett. 26 (12) (2022) 2959-2963.

[88]

Y. Lu, M.R. Asghar, Semantic communications between distributed cyber-physical systems towards collaborative automation for smart manufacturing, J. Manuf. Syst. 55 (2020) 348-359.

[89]

L. Hu, G. Wu, Y. Xing, F. Wang, Things2Vec: semantic modeling in the Internet of things with graph representation learning, IEEE Int. Things J. 7(3) (2020) 1939-1948.

[90]

S. Girisha, U. Verma, M.M. Manohara Pai, R.M. Pai, UVid-net: enhanced semantic segmentation of UAV aerial videos by embedding temporal information, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14 (2021) 4115-4127.

[91]

A.S. Chakravarthy, S. Sinha, P. Narang, M. Mandal, V. Chamola, F.R. Yu, Drone-segnet: robust aerial semantic segmentation for UAV-based IoT applications, IEEE Trans. Veh. Technol. 71 (4) (2022) 4277-4286.

[92]

R. Fernandez-Beltran, J.M. Haut, M.E. Paoletti, J. Plaza, A. Plaza, F. Pla, Remote sensing image fusion using hierarchical multimodal probabilistic latent seman-tic analysis, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11 (12) (2018) 4982-4993.

[93]

R. Fernandez-Beltran, J.M. Haut, M.E. Paoletti, J. Plaza, A. Plaza, F. Pla, Multi-modal probabilistic latent semantic analysis for sentinel-1 and sentinel-2 image fusion, IEEE Geosci. Remote Sens. Lett. 15 (9) (2018) 1347-1351.

[94]

Y. Sun, Z. Fu, C. Sun, Y. Hu, S. Zhang, Deep multimodal fusion network for seman-tic segmentation using remote sensing image and LiDAR data, IEEE Trans. Geosci. Remote Sens. 60 (2022) 1-18.

[95]

X. Li, L. Lei, C. Zhang, G. Kuang, Multimodal semantic consistency-based fusion architecture search for land cover classification, IEEE Trans. Geosci. Remote Sens. 60 (2022) 1-14.

[96]

L. Ding, H. Guo, S. Liu, L. Mou, J. Zhang, L. Bruzzone, Bi-temporal semantic rea-soning for the semantic change detection in hr remote sensing images, IEEE Trans. Geosci. Remote Sens. 60 (2022) 1-14.

[97]

Z. Ning, K. Zhang, X. Wang, L. Guo, X. Hu, J. Huang, B. Hu, R.Y.K. Kwok, Intelligent edge computing in Internet of vehicles: a joint computation offloading and caching solution, IEEE Trans. Intell. Transp. Syst. 22 (4) (2021) 2212-2225.

[98]

J. Zhou, D. Tian, Y. Wang, Z. Sheng, X. Duan, V.C. Leung, Reliability-optimal coop-erative communication and computing in connected vehicle systems, IEEE Trans. Mob. Comput. 19 (5) (2020) 1216-1232.

[99]

Z. Ning, K. Zhang, X. Wang, M.S. Obaidat, L. Guo, X. Hu, B. Hu, Y. Guo, B. Sadoun, R.Y.K. Kwok, Joint computing and caching in 5G-envisioned Internet of vehicles: a deep reinforcement learning-based traffic control system, IEEE Trans. Intell. Transp. Syst. 22 (8) (2021) 5201-5212.

[100]

J. Li, J. Ma, Y. Miao, F. Yang, X. Liu, K.-K.R. Choo, Secure semantic-aware search over dynamic spatial data in VANETs, IEEE Trans. Veh. Technol. 70 (9) (2021) 8912-8925.

[101]

Z. Zhang, J. Zhao, C. Huang, L. Li, Learning visual semantic map-matching for loosely multi-sensor fusion localization of autonomous vehicles, IEEE Trans. Intell. Veh. 8(1) (2023) 358-367.

[102]

J. Yang, J. Liu, R. Han, J. Wu, Generating and restoring private face images for Internet of vehicles based on semantic features and adversarial examples, IEEE Trans. Intell. Transp. Syst. 23 (9) (2022) 16799-16809.

[103]

D. Furtado, A.F. Gygax, C.A. Chan, A.I. Bush, Time to forge ahead: the Internet of things for healthcare, Digit. Commun. Netw. 9(1) (2023) 223-235.

[104]

Z. Ning, P. Dong, X. Wang, X. Hu, L. Guo, B. Hu, Y. Guo, T. Qiu, R.Y.K. Kwok, Mo-bile edge computing enabled 5G health monitoring for Internet of medical things: a decentralized game theoretic approach, IEEE J. Sel. Areas Commun. 39 (2) (2021) 463-478.

[105]

A. Dridi, S. Sassi, S. Faiz,Towards a semantic medical Internet of things, in:2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), 2017, pp. 1421-1428.

[106]

A. Rhayem, M.B.A. Mhiri, F. Gargouri, Complex-event processing for diabetic pa-tients in the Internet of medical things: semantic-based approach,in: 2019 7th International Conference on ICT & Accessibility (ICTA), 2019, pp. 1-6.

[107]

B. Huang, J. Tian, H. Zhang, Z. Luo, J. Qin, C. Huang, X. He, Y. Luo, Y. Zhou, G. Dan, H. Chen, S.-T. Feng, C. Yuan, Deep semantic segmentation feature-based radiomics for the classification tasks in medical image analysis, IEEE J. Biomed. Health Inform. 25 (7) (2021) 2655-2664.

[108]

S. Ding, H. Huang, Z. Li, X. Liu, S. Yang, Scnet: a novel UGI cancer screening frame-work based on semantic-level multimodal data fusion, IEEE J. Biomed. Health Inform. 25 (1) (2021) 143-151.

[109]

S. Ding, S. Hu, X. Li, Y. Zhang, D.D. Wu, Leveraging multimodal semantic fusion for gastric cancer screening via hierarchical attention mechanism, IEEE Trans. Syst. Man Cybern. Syst. 52 (7) (2022) 4286-4299.

[110]

Z. Tu, K. Zhao, F. Xu, Y. Li, L. Su, D. Jin, Protecting trajectory from semantic attack considering 𝑘-anonymity, 𝑙-diversity, and 𝑡-closeness, IEEE Trans. Netw. Serv. Manag. 16 (1) (2019) 264-278.

[111]

J. Chen, C. Wang, K. He, Z. Zhao, M. Chen, R. Du, G.-J. Ahn, Semantics-aware privacy risk assessment using self-learning weight assignment for mobile APPs, IEEE Trans. Dependable Secure Comput. 18 (1) (2021) 15-29.

[112]

A. Huertas Celdrán, F.J. García Clemente, M. Gil Pérez, G. Martínez Pérez, SeC-oMan: a semantic-aware policy framework for developing privacy-preserving and context-aware smart applications, IEEE Syst. J. 10 (3) (2016) 1111-1124.

[113]

P. Zhang, M. Zhou, Q. Zhao, A. Abusorrah, O.O. Bamasag, A performance-optimized consensus mechanism for consortium blockchains consisting of trust-varying nodes, IEEE Trans. Netw. Sci. Eng. 8(3) (2021) 2147-2159.

[114]

Q. Zhao, G. Li, J. Cai, M. Zhou, L. Feng, A tutorial on Internet of behaviors: concept, architecture, technology, applications, and challenges, IEEE Commun. Surv. Tutor. 25 (2) (2023) 1227-1260.

[115]

G. Xiong, F.-Y. Wang, T.R. Nyberg, X. Shang, M. Zhou, Z. Shen, S. Li, C. Guo, From mind to products: towards social manufacturing and service, IEEE/CAA J. Autom. Sin. 5(1) (2018) 47-57.

[116]

Q. Fang, G. Xiong, M. Zhou, T.S. Tamir, C.-B. Yan, H. Wu, Z. Shen, F.-Y. Wang, Process monitoring, diagnosis and control of additive manufacturing, IEEE Trans. Autom. Sci. Eng. (2022) 1-27.

AI Summary AI Mindmap
PDF

540

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/