LOS and NLOS identification in real indoor environment using deep learning approach

Alicja Olejniczak , Olga Blaszkiewicz , Krzysztof K. Cwalina , Piotr Rajchowski , Jaroslaw Sadowski

›› 2024, Vol. 10 ›› Issue (5) : 1305 -1312.

PDF
›› 2024, Vol. 10 ›› Issue (5) :1305 -1312. DOI: 10.1016/j.dcan.2023.05.009
Research article
research-article

LOS and NLOS identification in real indoor environment using deep learning approach

Author information +
History +
PDF

Abstract

Visibility conditions between antennas, i.e. Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) can be crucial in the context of indoor localization, for which detecting the NLOS condition and further correcting constant position estimation errors or allocating resources can reduce the negative influence of multipath propagation on wireless communication and positioning. In this paper a Deep Learning (DL) model to classify LOS/NLOS condition while analyzing two Channel Impulse Response (CIR) parameters: Total Power (TP) [dBm] and First Path Power (FP) [dBm] is proposed. The experiments were conducted using DWM1000 DecaWave radio module based on measurements collected in a real indoor environment and the proposed architecture provides LOS/NLOS identification with an accuracy of more than 100% and 95% in static and dynamic senarios, respectively. The proposed model improves the classification rate by 2-5% compared to other Machine Learning (ML) methods proposed in the literature.

Keywords

Deep learning / Machine learning / LOS / NLOS / UWB

Cite this article

Download citation ▾
Alicja Olejniczak, Olga Blaszkiewicz, Krzysztof K. Cwalina, Piotr Rajchowski, Jaroslaw Sadowski. LOS and NLOS identification in real indoor environment using deep learning approach. , 2024, 10(5): 1305-1312 DOI:10.1016/j.dcan.2023.05.009

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

F. Kirsch, R. Miesen, M. Vossiek, Precise local-positioning for autonomous situa-tion awareness in the Internet of Things, in: IEEE MTT-S International Microwave Symposium Digest, 2014.

[2]

Y. Zhong, E. Dutkiewicz, Y. Yang, X. Zhu, Z. Zhou, T. Jiang, Internet of mission-critical things: human and animal classification-a device-free sensing approach, IEEE Int. Things J. 5(5) (2018) 3369-3377.

[3]

A.A. Adebomehin, S.D. Walker, Impulse radio ultrawideband D2D-based localization for ultra-dense 5G networks, in: 2017 IEEE 18th Wireless and Microwave Technol-ogy Conference, WAMICON 2017.

[4]

Pinky A. Pandey S. Kumar, Smart device localization using femtocell and macro base station based path loss models in IoT networks, in: International Symposium on Advanced Networks and Telecommunication Systems, ANTS, 2019, pp. 1-6.

[5]

W. Wang, S.L. Capitaneanu, D. Marinca, E.-S. Lohan, Comparative analysis of channel models for industrial IoT wireless communication, IEEE Access 7 (2019) 91627-91640.

[6]

G.P. Koudouridis, C. Qvarfordt, A method for the generation of radio signal coverage maps for dense networks, in: IEEE International Conference on Communications, 2018-May, 2018, pp. 1-6.

[7]

D. Dardari, N. Decarli, A. Guerra, F. Guidi, The future of ultra-wideband localization in RFID, in: 2016 IEEE International Conference on RFID, RFID 2016.

[8]

D. Dardari, A. Conti, U. Ferner, A. Giorgetti, M.Z. Win, Ranging with ultrawide bandwidth signals in multipath environments, Proc. IEEE 97 (2) (2009) 404-425.

[9]

A.M. Bosneag, M.X. Wang,Intelligent network management mechanisms as a step towards SG, in:Proceedings of the 2017 8th International Conference on the Net-work of the Future, NOF 2017 2018-Janua, 2018, pp. 52-57.

[10]

Z.M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, K. Mizutani, State-of-the-art deep learning: evolving machine intelligence toward tomorrow’s intel-ligent network traffic control systems, IEEE Commun. Surv. Tutor. 19 (4) (2017) 2432-2455.

[11]

Q. Mao, F. Hu, Q. Hao, Deep learning for intelligent wireless networks: a compre-hensive survey, IEEE Commun. Surv. Tutor. 20 (4) (2018) 2595-2621.

[12]

F. Lyu, N. Cheng, H. Zhu, H. Zhou, W. Xu, M. Li, X.S. Shen, Intelligent context-aware communication paradigm design for IoVs based on data analytics, IEEE Netw. 32 (6)(2018) 74-82.

[13]

F. Lyu, N. Cheng, H. Zhou, W. Xu, W. Shi, J. Chen, M. Li, DBCC: leveraging link perception for distributed beacon congestion control in VANETs, IEEE Int. Things J. 5(6) (2018) 4237-4249.

[14]

B. Guermah, H. El Ghazi, T. Sadiki, H. Guermah, A robust GNSS LOS/multipath signal classifier based on the fusion of information and machine learning for intelli-gent transportation systems, in: 2018 IEEE International Conference on Technology Management, Operations and Decisions, ICTMOD 2018, IEEE, 2019, pp. 94-100.

[15]

L.T. Hsu, GNSS multipath detection using a machine learning approach, in: IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC 2018-March, 2018, pp. 1-6.

[16]

B. Chitambira, S. Armour, S. Wales, M. Beach, NLOS identification and mitigation for geolocation using least-squares support vector machines, in: IEEE Wireless Com-munications and Networking Conference, WCNC, 2017, pp. 1-6.

[17]

V.H. Nguyen, M.T. Nguyen, J. Choi, Y.H. Kim, NLOS identification in WLANs using deep LSTM with CNN features, Sensors (Switzerland) 18 (11) (2018) 1-13.

[18]

J. Fan, A.S. Awan, Non-line-of-sight identification based on unsupervised machine learning in ultra wideband systems, IEEE Access 7 (2019) 32464-32471.

[19]

G. Ding, Z. Tan, J. Wu, J. Zhang, Efficient indoor fingerprinting localization tech-nique using regional propagation model, IEICE Trans. Commun. E97-B (8) (2014) 1728-1741.

[20]

X. Cai, X. Li, R. Yuan, Y. Hei,Identification and mitigation of NLOS based on channel state information for indoor WiFi localization, in:2015 International Conference on Wireless Communications and Signal Processing, WCSP 2015, pp. 1-5.

[21]

X. Li, X. Cai, Y. Hei, R. Yuan, NLOS identification and mitigation based on channel state information for indoor WiFi localisation, IET Commun. 11 (4) (2017) 531-537.

[22]

Z. Xiao, H. Wen, A. Markham, N. Trigoni, P. Blunsom, J. Frolik, Non-line-of-sight identification and mitigation using received signal strength, IEEE Trans. Wirel. Com-mun. 14 (3) (2015) 1689-1702.

[23]

Z. Zeng, S. Liu, L. Wang, UWB NLOS identification with feature combination se-lection based on genetic algorithm, in: 2019 IEEE International Conference on Consumer Electronics, ICCE 2019, pp. 1-5.

[24]

J.B. Kristensen, M.M. Ginard, O.K. Jensen, M. Shen, Non-line-of-sight identification for UWB indoor positioning systems using support vector machines, in: 2019 IEEE MTT-S International Wireless Symposium, IWS, 2019, pp. 1-3.

[25]

S. Maranò W.M. Gifford, H. Wymeersch, M.Z. Win, NLOS identification and mitiga-tion for localization based on UWB experimental data, IEEE J. Sel. Areas Commun. 28 (7) (2010) 1026-1035.

[26]

K. Bregar, M. Mohorcic, Improving indoor localization using convolutional neural networks on computationally restricted devices, IEEE Access 6 (2018) 17429-17441.

[27]

M. Kolakowski, J. Modelski, Detection of direct path component absence in NLOS UWB channel, in: MIKON 2018 - 22nd International Microwave and Radar Confer-ence, 2018, pp. 247-250.

[28]

R. Zandian, U. Witkowski, Differential NLOS error detection in UWB-based local-ization systems using logistic regression, in: 2018 15th Workshop on Positioning, Navigation and Communications, WPNC 2018, pp. 1-6.

[29]

S. Krishnan, R. Xenia Mendoza Santos, E. Ranier Yap, M. Thu Zin, Improving UWB based indoor positioning in industrial environments through machine learning, in: 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 138632 (65), 2018, pp. 1484-1488.

[30]

J.S. Choi, W.H. Lee, J.H. Lee, J.H. Lee, S.C. Kim, Deep learning based NLOS iden-tification with commodity WLAN devices, IEEE Trans. Veh. Technol. 67 (4) (2018) 3295-3303.

[31]

M. Ramadan, V. Sark, J. Gutiérrez, E. Grass,NLOS identification for indoor lo-calization using random forest algorithm, in:WSA 2018; 22nd International ITG Workshop on Smart Antennas, February 2018, pp. 1-5.

[32]

DecaWave, DWM1000 User Manual, v.2.09 (2016).

[33]

K.K. Cwalina, S.J. Ambroziak, P. Rajchowski, An off-body narrowband and ultra-wide band channel model for body area networks in a ferryboat environment, Appl. Sci. (Switzerland) 8(6) (2018) 1-16.

[34]

P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple features, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, USA, 2001.

[35]

Y. Freund, R.E. Schapire, A short introduction to Boosting 14 (5) (2015) 771-780.

[36]

K.K. Cwalina, P. Rajchowski, O. Blaszkiewicz, A. Olejniczak, Deep learning-based LOS and NLOS identification in wireless body area networks, MDPI Sens. 19 (19)(2019) 4229.

[37]

I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, London, 2016.

[38]

J. Patterson, A. Gibson, Deep Learning a Practitioner’s Approach, O’Reilly, USA, 2017.

[39]

D.P. Kingma, J.L. Ba, ADAM: a Method for Stochastic Optimization, 2014, pp. 1-15, arXiv :1412.6980v9.

AI Summary AI Mindmap
PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/