In-band full-duplex MIMO PLC systems for relaying networks

J. Cañete Francisco , Prasad Gautham , Lampe Lutz

›› 2025, Vol. 11 ›› Issue (1) : 145 -159.

PDF
›› 2025, Vol. 11 ›› Issue (1) : 145 -159. DOI: 10.1016/j.dcan.2023.05.005
Original article

In-band full-duplex MIMO PLC systems for relaying networks

Author information +
History +
PDF

Abstract

In Power Line Communications (PLC), there are regulatory masks that restrict the transmit power spectral density for electromagnetic compatibility reasons, which creates coverage issues despite the not too long distances. Hence, PLC networks often employ repeaters/relays, especially in smart grid neighborhood area networks. Even in broadband indoor PLC systems that offer a notable data rate, relaying may pave the way to new applications like being the backbone for wireless technologies in a cost-effective manner to support the Internet-of-things paradigm. In this paper, we study Multiple-Input Multiple-Output (MIMO) PLC systems that incorporate in-band full-duplex functionality in relaying networks. We present several MIMO configurations that allow end-to-end half-duplex or full-duplex operations and analyze the achievable performance with state-of-the-art PLC systems. To reach this analysis, we get channel realizations from random network layouts for indoor and outdoor scenarios. We adopt realistic MIMO channel and noise models and consider transmission techniques according to PLC standards. The concepts discussed in this work can be useful in the design of future PLC relay-aided networks for different applications that look for a coverage extension and/or throughput: smart grids with enhanced communications in outdoor scenarios, and “last meter” systems for high-speed connections everywhere in indoor ones.

Keywords

PLC / MIMO / Relaying networks / OFDM / Spatial correlation / Performance analysis

Cite this article

Download citation ▾
J. Cañete Francisco, Prasad Gautham, Lampe Lutz. In-band full-duplex MIMO PLC systems for relaying networks. , 2025, 11(1): 145-159 DOI:10.1016/j.dcan.2023.05.005

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work has been supported by the Spanish Government and EU, under project PID2019-109842RB-I00/AEI/10.13039/501100011033.

References

[1]

L. Lampe, A.M. Tonello, T.G. Swart (Eds.), Power Line Communications: Princi-ples, Standards and Applications from Multimedia to Smart Grid, second ed., Wiley, Chichester, UK, 2016.

[2]

S. Galli, A. Scaglione, Z. Wang, For the grid and through the grid: the role of power line communications in the smart grid, Proc. IEEE 99 (6) (2011) 998-1027.

[3]

1901.1-2018- IEEE Standard for medium frequency (less than 12 MHz) power line communications for smart grid applications, https://ieeexplore.ieee.org/document/8360785, 2018. (Accessed 1 April 2023).

[4]

A. Sendin, I. Peña, P. Angueira, Strategies for power line communications smart metering network deployment, Energies 7 (4) (2014) 2377-2420.

[5]

D. Borovina, M. Zajc, A. Mujcic, A. Tonello, N. Suljanovic, Error performance analy-sis and modeling of narrow-band PLC technology enabling smart metering systems, Int. J. Electr. Power Energy Syst. 116 (2020) 105536.

[6]

G. Hallak, M. Berners, A. Mengi, Planning approach towards optimal performance and cost of G.hn broadband PLC access networks, in: International Symposium on Power Line Communications and Its Applications (ISPLC), IEEE, 2020, pp. 1-6.

[7]

J.A. Cortes, F.J. Canete, M. Toril, E. Martos-Naya, J. Poncela, L. Diez, A. Garcia, Feasibility study of power line communications for backhauling outdoor small cells, IEEE Access 9 (2021) 30135-30153.

[8]

Unified high-speed wireline-based home networking transceivers - System archi-tecture and physical layer specification,ITU-T Recommendation G.9960, https://www.itu.int/rec/T-REC-G.9960, 2018. (Accessed 1 April 2023).

[9]

Yitran Technologies,PITEL10™ multi dwelling unit access system, https://yitran.com/products/pitel10/. (Accessed 1 April 2023).

[10]

S. Galli, H. Latchman, V. Oksman, G. Prasad, L.W. Yonge, Multimedia PLC systems, in: L. Lampe, A.M.Tonello, T.G.Swart (Power Line Communications:Eds.), Princi-ples, Standards and Applications from Multimedia to Smart Grid, second ed., Wiley, Chichester, UK, 2016, pp. 473-508.

[11]

L. Lampe, R. Schober, S. Yiu, Distributed space-time coding for multihop transmis-sion in power line communication networks, IEEE J. Sel. Areas Commun. 24 (7) (2006) 1389-1400.

[12]

S. D’Alessandro, A. Tonello, et al. (Eds.), Relaying protocols for in-home PLC, in: L. Berger, MIMO Power Line Communications, CRC Press, 2017, pp. 553-572.

[13]

L. Lampe, A.J. Vinck, Cooperative multihop power line communications, in: Inter-national Symposium on Power Line Communications and Its Applications (ISPLC), IEEE, 2012, pp. 1-6.

[14]

X. Cheng, R. Cao, L. Yang, Relay-aided amplify-and-forward powerline communica-tions, IEEE Trans. Smart Grid 4 (1) (2013) 265-272.

[15]

T. Riihonen, S. Werner, R. Wichman, Optimized gain control for single-frequency re-laying with loop interference, IEEE Trans. Wirel. Commun. 8 (6) (2009) 2801-2806.

[16]

T. Riihonen, S. Werner, R. Wichman, Hybrid full-duplex/half-duplex relaying with transmit power adaptation, IEEE Trans. Wirel. Commun. 10 (9) (2011) 3074-3085.

[17]

Y.Y. Kang, B.J. Kwak, J.H. Cho, An optimal full-duplex AF relay for joint analog and digital domain self-interference cancellation, IEEE Trans. Commun. 62 (8) (2014) 2758-2772.

[18]

S. Li, K. Yang, M. Zhou, J. Wu, L. Song, Y. Li, H. Li, Full-duplex amplify-and-forward relaying: power and location optimization, IEEE Trans. Veh. Technol. 66 (9) (2017) 8458-8468.

[19]

M. De Lima Filomeno, G.R. Colen, L. Giroto De Oliveira, M.V. Ribeiro, Two-stage single-relay channel model for in-home broadband PLC systems, IEEE Syst. J. 13 (1) (2019) 204-214.

[20]

V. Fernandes, W.A. Finamore, H. Vincent Poor, M.V. Ribeiro, The low-bit-rate hybrid power line/wireless single-relay channel, IEEE Syst. J. 13 (1) (2019) 98-109.

[21]

K.M. Rabie, B. Adebisi, A.M. Tonello, G. Nauryzbayev, For more energy-efficient dual-hop DF relaying power-line communication systems, IEEE Syst. J. 12 (2) (2018) 2005-2016.

[22]

F. Passerini, A.M. Tonello, Analog full-duplex amplify-and-forward relay for power line communication networks, IEEE Commun. Lett. 23 (4) (2019) 676-679.

[23]

F.J. Cañete, G. Prasad, L. Lampe, PLC networks with in-band full-duplex relays, in: International Symposium on Power Line Communications and Its Applications (ISPLC), IEEE, 2020, pp. 1-6.

[24]

L. Yonge, J. Abad, K. Afkhamie, L. Guerrieri, S. Katar, H. Lioe, P. Pagani, R. Riva, D.M. Schneider, A. Schwager, An overview of the Homeplug AV2 technology, J. Electr. Comput. Eng. 2013 ( 2013) 892628.

[25]

G. Prasad, L. Lampe, S. Shekhar, In-band full duplex broadband power line commu-nications, IEEE Trans. Commun. 64 (9) (2016) 3915-3931.

[26]

G. Prasad, L. Lampe, S. Shekhar, Digitally controlled analog cancellation for full du-plex broadband power line communications, IEEE Trans. Commun. 65 (10) (2017) 4419-4432.

[27]

V. Korzhun, A.M. Tonello,Channel tracking for future powerline-based full-duplex smart grid communication networks, in:International Conference on Smart Systems and Technologies (SST), 2022, pp. 87-92.

[28]

G. Prasad, L. Lampe, Full-duplex power line communications: design and applica-tions from multimedia to smart grid, IEEE Commun. Mag. 58 (2) (2020) 106-112.

[29]

D. Righini, A.M. Tonello, MIMO in-band-full-duplex PLC: design, analysis and first hardware realization of the analog self-interference cancellation stage, IEEE Open J. Commun. Soc. 2 (2021) 1344-1357.

[30]

A. Dubey, R.K. Mallik, PLC system performance with AF relaying, IEEE Trans. Com-mun. 63 (6) (2015) 2337-2345.

[31]

K.M. Rabie, B. Adebisi, H. Gacanin, G. Nauryzbayev, A. Ikpehai, Performance eval-uation of multi-hop relaying over non-Gaussian PLC channels, J. Commun. Netw. 19 (5) (2017) 531-538.

[32]

Y. Qian, J. Li, Y. Zhang, D.N.K. Jayakody, Performance analysis of an opportunistic relaying power line communication systems, IEEE Syst. J. 12 (4) (2018) 3865-3868.

[33]

A. Dubey, C. Kundu, T.M. Ngatched, O.A. Dobre, R.K. Mallik, Incremental relaying for power line communications: performance analysis and power allocation, IEEE Syst. J. 13 (4) (2019) 4236-4247.

[34]

R.K. Ahiadormey, P. Anokye, H.S. Jo, K.J. Lee, Performance analysis of two-way relaying in cooperative power line communications, IEEE Access 7 (2019) 97264-97280.

[35]

R.K. Ahiadormey, P. Anokye, H.S. Jo, K.J. Lee, Decode-and-forward two-way relay-ing in power line communications, in: Vehicular Technology Conference (VTC2019- Fall), IEEE, 2019, pp. 1-5.

[36]

N. Agrawal, P.K. Sharma, T.A. Tsiftsis, Multihop DF relaying in NB-PLC system over Rayleigh fading and Bernoulli-Laplacian noise, IEEE Syst. J. 13 (1) (2019) 357-364.

[37]

M. Jani, P. Garg, A. Gupta, Performance analysis of a mixed cooperative PLC-VLC system for indoor communication systems, IEEE Syst. J. 14 (1) (2020) 469-476.

[38]

I.C. Papaleonidopoulos, C.N. Capsalis, C.G. Karagiannopoulos, N.J. Theodorou, Sta-tistical analysis and simulation of indoor single-phase low voltage power-line com-munication channels on the basis of multipath propagation, IEEE Trans. Consum. Electron. 49 (1) (2003) 89-99.

[39]

S. Galli, A simple two-tap statistical model for the power line channel, in: Inter-national Symposium on Power Line Communications and Its Applications (ISPLC), IEEE, 2010, pp. 242-248.

[40]

F. Cañete, L. Díez, J. Cortés, J. Entrambasaguas, Broadband modelling of indoor power-line channels, IEEE Trans. Consum. Electron. 48 (1) (2002) 175-183.

[41]

T. Esmailian, F.R. Kschischang, P.G. Gulak, In-building power lines as high-speed communication channels: channel characterization and a test channel ensemble, Int. J. Commun. 16 (5) (2003) 381-400.

[42]

F.J. Cañete, J.A. Cortés, L. Díez, J.T. Entrambasaguas, Analysis of the cyclic short-term variation of indoor power line channels, IEEE J. Sel. Areas Commun. 24 (7) (2006) 1327-1338.

[43]

F. Versolatto, A.M. Tonello, An MTL theory approach for the simulation of MIMO power line communication channels, IEEE Trans. Power Deliv. 26 (3) (2011) 1710-1717.

[44]

R. Hashmat, P. Pagani, A. Zeddam, T. Chonave, A channel model for multiple in-put multiple output in-home power line networks, in: International Symposium on Power Line Communications and Its Applications (ISPLC), IEEE, 2011, pp. 35-41.

[45]

P. Pagani, A. Schwager, A statistical model of the in-home MIMO PLC channel based on European field measurements, IEEE J. Sel. Areas Commun. 34 (7) (2016) 2033-2044.

[46]

A. Goldsmith, Wireless Communications, Cambridge University Press, New York, 2005.

[47]

S. Galli, T. Banwell, A novel approach to accurate modeling of the indoor power line channel - part II: transfer function and channel properties, IEEE Trans. Power Deliv. 20 (3) (2005) 1869-1878.

[48]

P. Pagani, R. Hashmat, A. Schwager, D. Schneider, W. Baschlin, European MIMO PLC field measurements: noise analysis, in: International Symposium on Power Line Communications and Its Applications, (ISPLC), IEEE, 2012, pp. 310-315.

[49]

J. Cortés, J. Corchado, F. Cañete, L. Díez, Analysis and exploitation of the noise correlation in MIMO power line communications in the FM band, IEEE Commun. Lett. 22 (3) (2018) 566-569.

[50]

S. Krusevac, P. Rapajic, R.A. Kennedy, Channel capacity estimation for MIMO systems with correlated noise, in: Global Telecommunications Conference, GLOBE-COM, IEEE, 2005, pp. 2812-2816.

[51]

D. Rende, A. Nayagam, K. Afkhamie, L. Yonge, R. Riva, D. Veronesi, F. Osnato, P. Bisaglia, Noise correlation and its effect on capacity of inhome MIMO power line channels, in: International Symposium on Power Line Communications and Its Applications (ISPLC), IEEE, 2011, pp. 60-65.

[52]

A. Pittolo, A.M. Tonello, F. Versolatto, Performance of MIMO PLC in measured channels affected by correlated noise, in: International Symposium on Power Line Communications and Its Applications (ISPLC), IEEE, 2014, pp. 261-265.

[53]

Ö. Oyman, J.N. Laneman, S. Sandhu, Multihop relaying for broadband wireless mesh networks: from theory to practice, IEEE Commun. Mag. 45 (11) (2007) 116-122.

[54]

I. Ullah, A. Dowhuszko, Z. Zheng, D. González González, J. Hämäläinen, End-to-end data rate performance of decode-and-forward relaying with different resource allocation schemes, Mob. Inf. Syst. 2017 ( 2017) 3708142.

[55]

F. Gruber, L. Lampe, On PLC channel emulation via transmission line theory, in: International Symposium on Power Line Communications and Its Applications (IS-PLC), IEEE, 2015, pp. 178-183.

[56]

J. Corchado, J. Cortés, F. Cañete, A. Arregui, L. Díez, Analysis of the spatial correla-tion of indoor MIMO PLC channels, IEEE Commun. Lett. 21 (1) (2017) 40-43.

[57]

F. Cañete, J. Cortés, L. Díez, J. Entrambasaguas, A channel model proposal for in-door power line communications, IEEE Commun. Mag. 49 (12) (2011) 166-174.

[58]

F. Gruber, L. Lampe,MIMO PLC channel emulator, http://www.ece.ubc.ca/-lampe/MIMOPLC, 2013. (Accessed 1 April 2023).

[59]

A.M. Tonello, S. D‘Alessandro, L. Lampe, Cyclic prefix design and allocation in bit-loaded OFDM over power line communication channels, IEEE Trans. Commun. 58 (11) (2010) 1-12.

[60]

L. Lampe, A.J. Vinck, On cooperative coding for narrow band PLC networks, AEÜ Int. J. Electron. Commun. 65 (8) (2011) 681-687.

[61]

R. Stafford, Random vector with fixed sum, MATLAB Central File Ex-change, https://www.mathworks.com/matlabcentral/fileexchange/9700-random-vectors-with-fixed-sum. (Accessed 1 April 2023).

[62]

1901- 2010 - IEEE Standard for broadband over power line networks: medium access control and physical layer specifications, https://ieeexplore.ieee.org/document/5678772, 2010. (Accessed 1 April 2023).

[63]

R. Hashmat, P. Pagani, T. Chonavel, A. Zeddam, Analysis and modeling of back-ground noise for inhome MIMO PLC channels, in: International Symposium on Power Line Communications and Its Applications (ISPLC), IEEE, 2012, pp. 316-321.

[64]

R. Hashmat, P. Pagani, T. Chonavel, A. Zeddam, A time-domain model of back-ground noise for in-home mimo PLC networks, IEEE Trans. Power Deliv. 27 (4) (2012) 2082-2089.

[65]

M. Zimmermann, K. Dostert, Analysis and modeling of impulsive noise in broad-band powerline communications, IEEE Trans. Electromagn. Compat. 44 (1) (2002) 249-258.

[66]

1901. 1.1- 2020 - IEEE Standard test procedures for IEEE std 1901.1 for medium fre-quency ( less than 15 MHz) power line communications for smart grid applications, https://ieeexplore.ieee.org/document/9381775, 2020. (Accessed 1 April 2023).

[67]

A. Tomasoni, R. Riva, S. Bellini, Spatial correlation analysis and model for in-home MIMO power line channels, in: International Symposium on Power Line Communi-cations and Its Applications (ISPLC), IEEE, 2012, pp. 286-291.

AI Summary AI Mindmap
PDF

429

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/