Secure beamforming designs for maximizing secrecy sum rate in MISO-NOMA networks

Zhang Yanbo , Yang Zheng , Cui Jingjing , Lei Xianfu , Wu Yi , Zhang Jun , Fang Chao , Ding Zhiguo

›› 2025, Vol. 11 ›› Issue (1) : 83 -91.

PDF
›› 2025, Vol. 11 ›› Issue (1) : 83 -91. DOI: 10.1016/j.dcan.2023.04.001
Original article

Secure beamforming designs for maximizing secrecy sum rate in MISO-NOMA networks

Author information +
History +
PDF

Abstract

In this paper, the application of Non-Orthogonal Multiple Access (NOMA) is investigated in a multiple-input single-output network consisting of multiple legitimate users and a potential eavesdropper. To support secure transmissions from legitimate users, two NOMA Secrecy Sum Rate Transmit BeamForming (NOMA-SSR-TBF) schemes are proposed to maximise the SSR of a Base Station (BS) with sufficient and insufficient transmit power. For BS with sufficient transmit power, an artificial jamming beamforming design scheme is proposed to disrupt the potential eavesdropping without impacting the legitimate transmissions. In addition, for BS with insufficient transmit power, a modified successive interference cancellation decoding sequence is used to reduce the impact of artificial jamming on legitimate transmissions. More specifically, iterative algorithm for the successive convex approximation are provided to jointly optimise the vectors of transmit beamforming and artificial jamming. Experimental results demonstrate that the proposed NOMA-SSR-TBF schemes outperforms the existing works, such as the maximized artificial jamming power scheme, the maximized artificial jamming power scheme with artificial jamming beamforming design and maximized secrecy sum rate scheme without artificial jamming beamforming design.

Keywords

NOMA / Secure transmission / Artificial jamming / Beamforming design

Cite this article

Download citation ▾
Zhang Yanbo, Yang Zheng, Cui Jingjing, Lei Xianfu, Wu Yi, Zhang Jun, Fang Chao, Ding Zhiguo. Secure beamforming designs for maximizing secrecy sum rate in MISO-NOMA networks. , 2025, 11(1): 83-91 DOI:10.1016/j.dcan.2023.04.001

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The work was supported in part by the Natural Science Foundation of Fujian Province under Grant 2022J01169, the Local Science and Technology Development of Fujian Province under Grant 2021L3010, the Key Project of Science and Technology Innovation of Fujian Province under Grant 2021G02006, the National Natural Science Foundation of China under Grants 61971360 and 62271420, the National Natural Science Foundation of China under Grant 62071247, and the Urban Carbon Neutral Science and Technology Innovation Fund Project of Beijing University of Technology ($040000514122607$).

References

[1]

Y. Zhang, Z. Yang, J. Cui, Y. Wu, J. Zhang, C. Fang, Z. Ding, Transmit beamforming designs for secure transmission in MISO-NOMA networks, in: Proc. IEEE 95th Veh. Technol. Conf. (VTC), 2022, pp. 1-6.

[2]

Z. Ding, X. Lei, G.K. Karagiannidis, R. Schober, J. Yuan, V.K. Bhargava, A survey on non-orthogonal multiple access for 5G networks: research challenges and future trends, IEEE J. Sel. Areas Commun. 35 (10) (2017) 2181-2195.

[3]

N. Ye, J. Yu, A. Wang, R. Zhang, Help from space: grant-free massive access for satellite-based IoT in the 6G era, Digit. Commun. Netw. 8 (2) (2022) 215-224.

[4]

G. Li, Z. Hong, Y. Pang, Y. Xu, Z. Huang, Resource allocation for sum-rate max-imization in NOMA-based generalized spatial modulation, Digit. Commun. Netw. 8 (6) (2022) 1077-1084.

[5]

H. Xie, Y. Xu, Robust resource allocation for NOMA-assisted heterogeneous net-works, Digit. Commun. Netw. 8 (2) (2022) 208-214.

[6]

Z. Ding, Z. Yang, P. Fan, H.V. Poor, On the performance of non-orthogonal multi-ple access in 5G systems with randomly deployed users, IEEE Signal Process. Lett. 21 (12) (2014) 1501-1505.

[7]

A.B. Adam, X. Wan, Z. Wang, User scheduling and power allocation for down-link multi-cell multi-carrier NOMA systems, Digit. Commun. Netw. 9 (1) (2023) 252-263.

[8]

J. Zhu, J. Wang, Y. Huang, K. Navaie, Z. Ding, L. Yang, On optimal beamforming design for downlink MISO NOMA systems, IEEE Trans. Veh. Technol. 69 (3) (2020) 3008-3020.

[9]

Y. Fu, M. Zhang, L. Salaün, C.W. Sung, C.S. Chen, Zero-forcing oriented power minimization for multi-cell MISO-NOMA systems: a joint user grouping, beamform-ing, and power control perspective, IEEE J. Sel. Areas Commun. 38 (8) (2020) 1925-1940.

[10]

J. Ding, J. Cai, C. Yi, An improved coalition game approach for MIMO-NOMA clus-tering integrating beamforming and power allocation, IEEE Trans. Veh. Technol. 68 (2) (2019) 1672-1687.

[11]

A. Krishnamoorthy, R. Schober, Uplink and downlink MIMO-NOMA with simulta-neous triangularization, IEEE Trans. Wirel. Commun. 20 (6) (2021) 3381-3396.

[12]

F. Fang, Y. Xu, Q.-V. Pham, Z. Ding, Energy-efficient design of IRS-NOMA networks, IEEE Trans. Veh. Technol. 69 (11) (2020) 14088-14092.

[13]

Z. Ding, H. Vincent Poor, A simple design of IRS-NOMA transmission, IEEE Commun. Lett. 24 (5) (2020) 1119-1123.

[14]

L. Bariah, S. Muhaidat, A. Al-Dweik, Error performance of NOMA-based cognitive radio networks with partial relay selection and interference power constraints, IEEE Trans. Commun. 68 (2) (2020) 765-777.

[15]

T.-H. Vu, T.-V. Nguyen, S. Kim, Wireless powered cognitive NOMA-based IoT relay networks: performance analysis and deep learning evaluation, IEEE Int. Things J. 9 (5) (2022) 3913-3929.

[16]

Z. Ding, J. Xu, O.A. Dobre, H.V. Poor, Joint power and time allocation for NOMA MEC offloading, IEEE Trans. Veh. Technol. 68 (6) (2019) 6207-6211.

[17]

H. Li, F. Fang, Z. Ding, Joint resource allocation for hybrid NOMA-assisted MEC in 6G networks, Digit. Commun. Netw. 6 (3) (2020) 241-252.

[18]

K.N. Le, Performance analysis of secure communications over dual correlated Rician fading channels, IEEE Trans. Commun. 66 (12) (2018) 6659-6673.

[19]

Y. Zou, J. Zhu, X. Wang, L. Hanzo, A survey on wireless security: technical chal-lenges, recent advances, and future trends, Proc. IEEE 104 (9) (2016) 1727-1765.

[20]

B. He, A. Liu, N. Yang, V.K.N. Lau, On the design of secure non-orthogonal multiple access systems, IEEE J. Sel. Areas Commun. 35 (10) (2017) 2196-2206.

[21]

Y. Zhang, X. Zhao, Z. Zhou, P. Qin, S. Geng, C. Xu, Y. Wang, L. Yang, Robust resource allocation for lightweight secure transmission in multicarrier NOMA-assisted full duplex IoT networks, IEEE Int. Things J. 9 (9) (2022) 6443-6457.

[22]

A.D. Wyner, The wire-tap channel, Bell Syst. Tech. J. 54 (8) (1975) 1355-1387.

[23]

X. Li, H.-N. Dai, Y. Wang, H. Wang, Eavesdropping activities in wireless networks: impact of channel randomness, in: TENCON IEEE Region 10th Conf., IEEE, 2015, pp. 1-4.

[24]

Y. Cao, N. Zhao, Y. Chen, M. Jin, Z. Ding, Y. Li, F.R. Yu, Secure transmission via beamforming optimization for NOMA networks, IEEE Wirel. Commun. 27 (1) (2020) 193-199.

[25]

N. Zhao, D. Li, M. Liu, Y. Cao, Y. Chen, Z. Ding, X. Wang, Secure transmission via joint precoding optimization for downlink MISO NOMA, IEEE Trans. Veh. Technol. 68 (8) (2019) 7603-7615.

[26]

H. Li, S. Zhao, Y. Li, C. Peng, Sum secrecy rate maximization in NOMA-based cog-nitive satellite-terrestrial network, IEEE Wireless Commun. Lett. 10 (10) (2021) 2230-2234.

[27]

H.-M. Wang, X. Zhang, Q. Yang, T.A. Tsiftsis, Secure users oriented downlink MISO NOMA, IEEE J. Sel. Top. Signal Process. 13 (3) (2019) 671-684.

[28]

R. Negi, S. Goel, Secret communication using artificial noise, in: Proc. IEEE 62th Veh. Technol. Conf. (VTC), 2005, pp. 1906-1910.

[29]

N. Zhao, W. Wang, J. Wang, Y. Chen, Y. Lin, Z. Ding, N.C. Beaulieu, Joint beamform-ing and jamming optimization for secure transmission in MISO-NOMA networks, IEEE Trans. Commun. 67 (3) (2019) 2294-2305.

[30]

W. Wang, X. Liu, J. Tang, N. Zhao, Y. Chen, Z. Ding, X. Wang, Beamforming and jamming optimization for IRS-aided secure NOMA networks, IEEE Trans. Wirel. Commun. 21 (3) (2022) 1557-1569.

[31]

Y. Han, N. Li, Y. Liu, T. Zhang, X. Tao, Artificial noise aided secure NOMA com-munications in STAR-RIS networks, IEEE Wireless Commun. Lett. 11 (6) (2022) 1191-1195.

[32]

Y. Zhang, H.-M. Wang, Q. Yang, Z. Ding, Secrecy sum rate maximization in non-orthogonal multiple access, IEEE Commun. Lett. 20 (5) (2016) 930-933.

[33]

J. Cui, Z. Ding, P. Fan, Outage probability constrained MIMO-NOMA designs under imperfect CSI, IEEE Trans. Wirel. Commun. 17 (12) (2018) 8239-8255.

[34]

R. Feng, Q. Li, Q. Zhang, J. Qin, Robust secure beamforming in MISO full-duplex two-way secure communications, IEEE Trans. Veh. Technol. 65 (1) (2016) 408-414.

[35]

M. Grant, S. Boyd, CVX: MATLAB software for disciplined convex programming, http://cvxr.com/cvx. (Accessed 13 September 2022).

[36]

S. Boyd, L. Vanderberghe, Convex Optimization, Cambridge Univ. Press, Cambridge, U.K., 2004.

[37]

Z.-Q. Luo, W.-K. Ma, A.M.-C. So, Y. Ye, S. Zhang, Semidefinite relaxation of quadratic optimization problems, IEEE Signal Process. Mag. 27 (3) (2010) 20-34.

[38]

I. Polik, T. Terlaky, Interior point methods for nonlinear optimization, in: G. DiPillo, F.Schoen (NonlinearOptimization,Eds.), 1st ed.ed., Springer, New York, 2010.

AI Summary AI Mindmap
PDF

281

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/