Dynamics modeling and optimal control for multi-information diffusion in Social Internet of Things

Yaguang Lin , Xiaoming Wang , Liang Wang , Pengfei Wan

›› 2024, Vol. 10 ›› Issue (3) : 655 -665.

PDF
›› 2024, Vol. 10 ›› Issue (3) :655 -665. DOI: 10.1016/j.dcan.2023.02.014
Research article
research-article

Dynamics modeling and optimal control for multi-information diffusion in Social Internet of Things

Author information +
History +
PDF

Abstract

As an ingenious convergence between the Internet of Things and social networks, the Social Internet of Things (SIoT) can provide effective and intelligent information services and has become one of the main platforms for people to spread and share information. Nevertheless, SIoT is characterized by high openness and autonomy, multiple kinds of information can spread rapidly, freely and cooperatively in SIoT, which makes it challenging to accurately reveal the characteristics of the information diffusion process and effectively control its diffusion. To this end, with the aim of exploring multi-information cooperative diffusion processes in SIoT, we first develop a dynamics model for multi-information cooperative diffusion based on the system dynamics theory in this paper. Subsequently, the characteristics and laws of the dynamical evolution process of multi-information cooperative diffusion are theoretically investigated, and the diffusion trend is predicted. On this basis, to further control the multi-information cooperative diffusion process efficiently, we propose two control strategies for information diffusion with control objectives, develop an optimal control system for the multi-information cooperative diffusion process, and propose the corresponding optimal control method. The optimal solution distribution of the control strategy satisfying the control system constraints and the control budget constraints is solved using the optimal control theory. Finally, extensive simulation experiments based on real dataset from Twitter validate the correctness and effectiveness of the proposed model, strategy and method.

Keywords

Social Internet of Things / Information diffusion / Dynamics modeling / Trend prediction / Optimal control

Cite this article

Download citation ▾
Yaguang Lin, Xiaoming Wang, Liang Wang, Pengfei Wan. Dynamics modeling and optimal control for multi-information diffusion in Social Internet of Things. , 2024, 10(3): 655-665 DOI:10.1016/j.dcan.2023.02.014

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Zhou, F.R. Yu, J. Chen, Y. Kuo, Cyber-physical-social systems: a state-of-the-art survey, challenges and opportunities, IEEE Commun. Survey Tutorial. 22 (1) (2020) 389-425.

[2]

C. Chi, Y. Wang, X. Tong, M. Siddula, Z. Cai, Game theory in internet of things: a survey, IEEE Internet Things J. 9 (14) (2022) 12125-12146.

[3]

M. Ibrar, L. Wang, A. Akbar, M.A. Jan, N. Shah, S.A. Abid, M. Segal, 3-d-sis: a 3-d-social identifier structure for collaborative edge computing based social iot, IEEE Trans. Comput. Soc. Syst. 9 (1) (2022) 313-323.

[4]

Y. Lin, X. Wang, F. Hao, Y. Jiang, Y. Wu, G. Min, D. He, S. Zhu, W. Zhao, Dynamic control of fraud information spreading in mobile social networks, IEEE Trans. Syst. Man Cybernet.: Systems 51 (6) (2021) 3725-3738.

[5]

H. Zhang, L. Zhu, T. Dai, L. Zhang, X. Feng, L. Zhang, K. Zhang, Smart object recommendation based on topic learning and joint features in the social internet of things, Digital Commun. Network. 9 (1) (2023) 22-32.

[6]

P. Wan, X. Wang, X. Wang, L. Wang, Y. Lin, W. Zhao, Intervening coupling diffusion of competitive information in online social networks, IEEE Trans. Knowl. Data Eng. 33 (6) (2021) 2548-2559.

[7]

S. Xia, Z. Yao, Y. Li, S. Mao, Online distributed offloading and computing resource management with energy harvesting for heterogeneous mec-enabled iot, IEEE Trans. Wireless Commun. 20 (10) (2021) 6743-6757.

[8]

X. Luo, Z. Yu, Z. Zhao, W. Zhao, J.-H. Wang, Effective short text classification via the fusion of hybrid feature for iot social data, Digital Commun. Network. 8 (6) (2022) 942-954.

[9]

Y. Lin, Z. Cai, X. Wang, F. Hao, L. Wang, A.M.V.V. Sai, Multi-round incentive mechanism for cold start-enabled mobile crowdsensing, IEEE Trans. Veh. Technol. 70 (1) (2021) 993-1007.

[10]

Z. Cai, Z. Duan, W. Li, Exploiting multi-dimensional task diversity in distributed auctions for mobile crowdsensing, IEEE Trans. Mobile Comput. 20 (8) (2021) 2576-2591.

[11]

Z. Lu, Y. Wang, Y. Li, X. Tong, C. Mu, C. Yu, Data-driven many-objective crowd worker selection for mobile crowdsourcing in industrial iot, IEEE Trans. Ind. Inf. 19 (1) (2023) 531-540.

[12]

Y. Li, H. Ma, L. Wang, S. Mao, G. Wang, Optimized content caching and user association for edge computing in densely deployed heterogeneous networks, IEEE Trans. Mobile Comput. 21 (6) (2022) 2130-2142.

[13]

Q. Xuan, X. Shu, Z. Ruan, J. Wang, C. Fu, G. Chen, A self-learning information diffusion model for smart social networks, IEEE Trans. Network. Sci. Eng. 7 (3)(2020) 1466-1480.

[14]

Z. He, Z. Cai, J. Yu, Latent-data privacy preserving with customized data utility for social network data, IEEE Trans. Veh. Technol. 67 (1) (2018) 665-673.

[15]

X. Wu, L. Fu, H. Long, D. Yang, Y. Lu, X. Wang, G. Chen, Adaptive diffusion of sensitive information in online social networks, IEEE Trans. Knowl. Data Eng. 33 (8)(2021) 3020-3034.

[16]

Z. He, Z. Cai, J. Yu, X. Wang, Y. Sun, Y. Li, Cost-efficient strategies for restraining rumor spreading in mobile social networks, IEEE Trans. Veh. Technol. 66 (3) (2017) 2789-2800.

[17]

T. Liu, Y. Wang, Y. Li, X. Tong, L. Qi, N. Jiang, Privacy protection based on stream cipher for spatiotemporal data in iot, IEEE Internet Things J. 7 (9) (2020) 7928-7940.

[18]

Y. Lin, X. Wang, H. Ma, L. Wang, F. Hao, Z. Cai, An efficient approach to sharing edge knowledge in 5g-enabled industrial internet of things, IEEE Trans. Ind. Inf. 19 (1) (2023) 930-939.

[19]

Z. Cai, Z. He, X. Guan, Y. Li, Collective data-sanitization for preventing sensitive information inference attacks in social networks, IEEE Trans. Dependable Secure Comput. 15 (4) (2018) 577-590.

[20]

P. Wan, X. Wang, G. Min, L. Wang, Y. Lin, W. Yu, X. Wu, Optimal control for positive and negative information diffusion based on game theory in online social networks, IEEE Trans. Network. Sci. Eng. 10 (1) (2023) 426-440.

[21]

Q. Zhang, Y. Wang, G. Yin, X. Tong, A.M.V.V. Sai, Z. Cai, Two-stage bilateral online priority assignment in spatio-temporal crowdsourcing, IEEE Trans. Service Comput. 16 (3) (2022) 1-14.

[22]

S. Gao, H. Pang, P. Gallinari, J. Guo, N. Kato, A novel embedding method for information diffusion prediction in social network big data, IEEE Trans. Ind. Inf. 13 (4) (2017) 2097-2105.

[23]

R. Yan, D. Li, W. Wu, D.-Z. Du, Y. Wang, Minimizing influence of rumors by blockers on social networks: algorithms and analysis, IEEE Trans. Network. Sci. Eng. 7 (3) (2020) 1067-1078.

[24]

L. Yang, Z. Li, A. Giua, Containment of rumor spread in complex social networks, Inf. Sci. 506 (2020) 113-130.

[25]

Y. Yi, Z. Zhang, L.T. Yang, C. Gan, X. Deng, L. Yi, Reemergence modeling of intelligent information diffusion in heterogeneous social networks: the dynamics perspective, IEEE Trans. Network. Sci. Eng. 8 (2) (2021) 828-840.

[26]

J. Gao, Y. Liu, X. Cheng, Decentralized cascade dynamics modeling, Scientia Sinica Informationis 48 (2018) 1575-1588.

[27]

S. Wen, M.S. Haghighi, C. Chen, Y. Xiang, W. Zhou, W. Jia, A sword with two edges: propagation studies on both positive and negative information in online social networks, IEEE Trans. Comput. 64 (3) (2015) 640-653.

[28]

W. Luo, W.P. Tay, M. Leng, How to identify an infection source with limited observations, IEEE J. Select Topic. Signal Process. 8 (4) (2014) 586-597.

[29]

J. Jiang, S. Wen, S. Yu, Y. Xiang, W. Zhou, Rumor source identification in social networks with time-varying topology, IEEE Trans. Dependable Secure Comput. 15 (1) (2018) 166-179.

[30]

Y. Zhu, D. Li, Z. Zhang, Minimum cost seed set for competitive social influence, in: The 35th IEEE International Conference on Computer Communications, INFOCOM, 2016, pp. 1-9.

[31]

L. Ding, P. Hu, Z.-H. Guan, T. Li, An efficient hybrid control strategy for restraining rumor spreading, IEEE Trans. Syst. Man Cybernet.: Systems 51 (11) (2021) 6779-6791.

[32]

L. Zhu, X. Huang, Y. Liu, Z. Zhang, Spatiotemporal dynamics analysis and optimal control method for an si reaction-diffusion propagation model, J. Math. Anal. Appl. 493 (2) (2021) 124539.

[33]

M. Li, X. Wang, K. Gao, S. Zhang, A survey on information diffusion in online social networks: models and methods, Information 8 (4) (2017) 118.

[34]

Y. Lin, X. Wang, F. Hao, L. Wang, C. Huang, Effective knowledge dissemination modeling and regulation in blended learning networks, IEEE Trans. Comput. Soc. Syst. 11 (1) (2024) 51-65.

[35]

W.M. Haddad, V. Chellaboina, Nonlinear Dynamical Systems and Control:A Lyapunov-Based Approach, Princeton University Press, 2011.

[36]

C. Yang, J. Wang, Basic reproduction numbers for a class of reaction-diffusion epidemic models, Bull. Math. Biol. 82 (111) (2020) 1-25.

[37]

L.D. Berkovitz, Optimal Control Theory, vol. 12, Springer Science & Business Media, 2013.

[38]

P. Pucci, J.B. Serrin, The Maximum Principle, vol. 73, Springer Science & Business Media, 2007.

[39]

R. D'Ambrosio, S. Di Giovacchino, Nonlinear stability issues for stochastic Runge-Kutta methods, Commun. Nonlinear Sci. Numer. Simulat. 94 (2021) 105549.

[40]

R. Zafarani, H. Liu, Social Computing Data Repository at ASU, 2009.

[41]

D. Quade, Nonparametric Partial Correlation, Routledge, 2017.

AI Summary AI Mindmap
PDF

60

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/