A novel EO-based optimum random beamforming method in mmWave-NOMA systems with sparse antenna array

Fatemeh Asghari Azhiri , Behzad Mozaffari Tazehkand , Reza Abdolee

›› 2024, Vol. 10 ›› Issue (5) : 1313 -1321.

PDF
›› 2024, Vol. 10 ›› Issue (5) :1313 -1321. DOI: 10.1016/j.dcan.2023.02.010
Research article
research-article

A novel EO-based optimum random beamforming method in mmWave-NOMA systems with sparse antenna array

Author information +
History +
PDF

Abstract

Millimeter-wave (mmWave) Non-Orthogonal Multiple Access (NOMA) with random beamforming is a promising technology to guarantee massive connectivity and low latency transmissions of future generations of mobile networks. In this paper, we introduce a cost-effective and energy-efficient mmWave-NOMA system that exploits sparse antenna arrays in the transmitter. Our analysis shows that utilizing low-weight and small-sized sparse antennas in the Base Station (BS) leads to better outage probability performance. We also introduce an optimum low complexity Equilibrium Optimization (EO)-based algorithm to further improve the outage probability. The simulation and analysis results show that the systems equipped with sparse antenna arrays making use of optimum beamforming vectors outperform the conventional systems with uniform linear arrays in terms of outage probability and sum rates.

Keywords

Beamforming / Millimeter-wave communication / Non-orthogonal multiple access / Sparse antenna arrays

Cite this article

Download citation ▾
Fatemeh Asghari Azhiri, Behzad Mozaffari Tazehkand, Reza Abdolee. A novel EO-based optimum random beamforming method in mmWave-NOMA systems with sparse antenna array. , 2024, 10(5): 1313-1321 DOI:10.1016/j.dcan.2023.02.010

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, I. Chih-Lin, H.V. Poor, Application of non-orthogonal multiple access in LTE and 5G networks, IEEE Commun. Mag. 55 (2) (2017) 185-191.

[2]

L. Dai, B. Wang, Z. Ding, Z. Wang, S. Chen, L. Hanzo, A survey of non-orthogonal multiple access for 5G, IEEE Commun. Surv. Tut. 20 (3) (2018) 2294-2323.

[3]

Y. Yuan, S. Wang, Y. Wu, H.V. Poor, Z. Ding, X. You, L. Hanzo, NOMA for next-generation massive IoT: performance potential and technology directions, IEEE Commun. Mag. 59 (7) (2021) 115-121.

[4]

X. Pei, Y. Chen, M. Wen, H. Yu, E. Panayirci, H.V. Poor, Next-generation multiple access based on NOMA with power level modulation, IEEE J. Sel. Area. Commun. 40 (4) (2022) 1072-1083.

[5]

Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, K. Higuchi, Non-orthogonal multiple access (NOMA) for cellular future radio access, in: 2013 IEEE 77th Vehicular Technology Conference, VTC Spring), 2013, pp. 1-5.

[6]

Z. Ding, F. Adachi, H.V. Poor, The application of MIMO to non-orthogonal multiple access, IEEE T. Wirel. Commun. 15 (1) (2016) 537-552.

[7]

A.E. Mostafa, Y. Zhou, V.W. Wong, Connectivity maximization for narrowband IoT systems with NOMA, in: 2017 IEEE International Conference on Communications (ICC), 2017, pp. 1-6.

[8]

M. Shirvanimoghaddam, M. Dohler, S.J. Johnson, Massive non-orthogonal multiple access for cellular IoT: potentials and limitations, IEEE Commun. Mag. 55 (9) (2017) 55-61.

[9]

Y. Liu, Z. Ding, M. Elkashlan, J. Yuan, Nonorthogonal multiple access in large-scale underlay cognitive radio networks, IEEE Trans. Veh. Technol. 65 (12) (2016) 10152-10157.

[10]

Z. Ding, H.V. Poor, Design of massive-MIMO-NOMA with limited feedback, IEEE Signal Process. Lett. 23 (5) (2016) 629-633.

[11]

Y. Sun, D.W.K. Ng, Z. Ding, R. Schober, Optimal joint power and subcarrier allocation for MC-NOMA systems, in: 2016 IEEE Global Communications Conference, GLOBECOM), 2016, pp. 1-6.

[12]

Y. Lan, A. Benjebboiu, X. Chen, A. Li, H. Jiang, Considerations on downlink non-orthogonal multiple access (NOMA) combined with closed-loop SU-MIMO,in:2014 8th International Conference on Signal Processing and Communication Systems, ICSPCS), 2014, pp. 1-5.

[13]

H. Dai, M. Liu, J. Yang, J. Sun, G. Gui, H. Sari, A weighted-beam-superposition method for mmWave massive MIMO-NOMA systems, Phys. Commun. 49 (2021) 101488.

[14]

X. Pang, J. Tang, N. Zhao, X. Zhang, Y. Qian, Energy-efficient design for mmWave-enabled NOMA-UAV networks, Sci. China Inf. Sci. 64 (4) (2021) 140303.

[15]

Z. Chen, N. Zhao, D.K.C. So, J. Tang, X.Y. Zhang, K.-K. Wong, Joint altitude and hybrid beamspace precoding optimization for uav-enabled multiuser mmwave mimo system, IEEE Trans. Veh. Technol. 71 (2) (2022) 1713-1725.

[16]

Y. Cao, S. Wang, M. Jin, N. Zhao, Y. Chen, Z. Ding, X. Wang, Joint user grouping and power optimization for secure mmWave-NOMA systems, IEEE Trans. Wireless Commun. 21 (5) (2022) 3307-3320.

[17]

K.-W. Huang, H.-M. Wang, Intelligent reflecting surface aided pilot contamination attack and its countermeasure, IEEE Trans. Wireless Commun. 20 (1) (2021) 345-359.

[18]

Z. Ding, P. Fan, H.V. Poor, Random beamforming in millimeter-wave NOMA networks, IEEE Access 5 (2017) 7667-7681.

[19]

G. Lee, Y. Sung, J. Seo, Randomly-directional beamforming in millimeter-wave multiuser MISO downlink, IEEE T. Wirel. Commun. 15 (2) (2016) 1086-1100.

[20]

T. Lv, Y. Ma, J. Zeng, P.T. Mathiopoulos, Millimeter-wave NOMA transmission in cellular M2M communications for internet of things, IEEE Internet Things J. 5 (3)(2018) 1989-2000.

[21]

S.A.R. Naqvi, S.A. Hassan, Combining NOMA and mmWave technology for cellular communication, in: 2016 IEEE 84th Vehicular Technology Conference, VTC-Fall), 2016, pp. 1-5.

[22]

L. Zhao, D.W.K. Ng, J. Yuan, Multi-user precoding and channel estimation for hybrid millimeter wave systems, IEEE J. Sel. Area. Commun. 35 (7) (2017) 1576-1590.

[23]

F. Sohrabi, W. Yu, Hybrid digital and analog beamforming design for large-scale antenna arrays, IEEE J. Sel. Top. Signal Process. 10 (3) (2016) 501-513.

[24]

M.R.G. Aghdam, R. Abdolee, F.A. Azhiri, B.M. Tazehkand, Random user pairing in massive-MIMO-NOMA transmission systems based on mmWave, in: 2018 IEEE 88th Vehicular Technology Conference, VTC-Fall), 2018, pp. 1-6.

[25]

W. Huang, Y. Huang, R. Zhao, S. He, L. Yang, Wideband millimeter wave communication: single carrier based hybrid precoding with sparse optimization, IEEE Trans. Veh. Technol. 67 (10) (2018) 9696-9710.

[26]

T.S. Rappaport, E. Ben-Dor, J.N. Murdock, Y. Qiao, 38 GHz and 60 GHz angle-dependent propagation for cellular amp; peer-to-peer wireless communications, in: 2012 IEEE International Conference on Communications, ICC), 2012, pp. 4568-4573.

[27]

S. Shakeri, D.D. Ariananda, G. Leus, Direction of arrival estimation using sparse ruler array design, in: 2012 IEEE 13th International Workshop on Signal Processing Advances in Wireless Communications, SPAWC), 2012, pp. 525-529.

[28]

P. Pal, P.P. Vaidyanathan, Nested arrays: a novel approach to array processing with enhanced degrees of freedom, IEEE Trans. Signal Process. 58 (8) (2010) 4167-4181.

[29]

P. Pal, P.P. Vaidyanathan, Coprime sampling and the MUSIC algorithm, in: 2011 Digital Signal Processing and Signal Processing Education Meeting, DSP/SPE, 2011, pp. 289-294.

[30]

A. Faramarzi, M. Heidarinejad, B. Stephens, S. Mirjalili, Equilibrium optimizer: a novel optimization algorithm, Knowl. Base Syst. 191 (2020) 105190.

[31]

J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN’95-International Conference on Neural Networks, 4, IEEE, 1995, pp. 1942-1948.

AI Summary AI Mindmap
PDF

70

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/