Deployment optimization for target perpetual coverage in energy harvesting wireless sensor network

Zhenkun Jin , Yixuan Geng , Chenlu Zhu , Yunzhi Xia , Xianjun Deng , Lingzhi Yi , Xianlan Wang

›› 2024, Vol. 10 ›› Issue (2) : 498 -508.

PDF
›› 2024, Vol. 10 ›› Issue (2) :498 -508. DOI: 10.1016/j.dcan.2023.02.009
Research article
research-article

Deployment optimization for target perpetual coverage in energy harvesting wireless sensor network

Author information +
History +
PDF

Abstract

Energy limitation of traditional Wireless Sensor Networks (WSNs) greatly confines the network lifetime due to generating and processing massive sensing data with a limited battery. The energy harvesting WSN is a novel network architecture to address the limitation of traditional WSN. However, existing coverage and deployment schemes neglect the environmental correlation of sensor nodes and external energy with respect to physical space. Comprehensively considering the spatial correlation of the environment and the uneven distribution of energy in energy harvesting WSN, we investigate how to deploy a collection of sensor nodes to save the deployment cost while ensuring the target perpetual coverage. The Confident Information Coverage (CIC) model is adopted to formulate the CIC Minimum Deployment Cost Target Perpetual Coverage (CICMTP) problem to minimize the deployed sensor nodes. As the CICMTP is NP-hard, we devise two approximation algorithms named Local Greedy Threshold Algorithm based on CIC (LGTA-CIC) and Overall Greedy Search Algorithm based on CIC (OGSA-CIC). The LGTA-CIC has a low time complexity and the OGSA-CIC has a better approximation rate. Extensive simulation results demonstrate that the OGSA-CIC is able to achieve lower deployment cost and the performance of the proposed algorithms outperforms GRNP, TPNP and EENP algorithms.

Keywords

Energy harvesting WSN / Deployment optimization / Confident information coverage(CIC) / Target perpetual coverage

Cite this article

Download citation ▾
Zhenkun Jin, Yixuan Geng, Chenlu Zhu, Yunzhi Xia, Xianjun Deng, Lingzhi Yi, Xianlan Wang. Deployment optimization for target perpetual coverage in energy harvesting wireless sensor network. , 2024, 10(2): 498-508 DOI:10.1016/j.dcan.2023.02.009

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Tripathi, A. Prakash, R. Tripathi, A novel slot scheduling technique for duty-cycle based data transmission for wireless sensor network, Digit. Commun. Netw. 8 (3)(2022) 351-358.

[2]

Y. Li, S. Xia, M. Zheng, B. Cao, Q. Liu, Lyapunov optimization-based trade-off policy for mobile cloud offloading in heterogeneous wireless networks, IEEE Trans. Cloud Comput. 10 (1) (2022) 491-505.

[3]

H. Wu, X. Han, H. Zhu, Cognitive WSN control optimization for unmanned farms under the two-layer game, IEEE Sensor. J. 22 (2) (2022) 1775-1785.

[4]

S. Xia, Z. Yao, G. Wu, Y. Li, Distributed offloading for cooperative intelligent transportation under heterogeneous networks, IEEE Trans. Intell. Transport. Syst. 23 (9) (2022) 16701-16714.

[5]

R. Zhao, L.T. Yang, D. Liu, X. Deng, Y. Mo, A tensor-based truthful incentive mechanism for blockchain-enabled space-air-ground integrated vehicular crowdsensing, IEEE Trans. Intell. Transport. Syst. 23 (3) (2022) 2853-2862.

[6]

X. Deng, Y. Tian, L. Yi, L.T. Yang, Y. Xia, X. Tang, C. Zhu, Resilient deployment of smart nodes for improving confident information coverage in 5G IoT, ACM Trans. Sens. Netw. 18 (3) (2022) 21.

[7]

X. Deng, Y. Jiang, L.T. Yang, L. Yi, J. Chen, Y. Liu, X. Li, Learning-automata-based confident information coverage barriers for smart ocean Internet of Things, IEEE Internet Things J. 7 (10) (2020) 9919-9929.

[8]

X. Zhou, X. Xu, W. Liang, Z. Zeng, S. Shimizu, L.T. Yang, Q. Jin, Intelligent small object detection for digital twin in smart manufacturing with industrial cyber-physical systems, IEEE Trans. Ind. Inf. 18 (2) (2022) 1377-1386.

[9]

Z. Xiong, Y. Zhang, W.Y.B. Lim, J. Kang, D. Niyato, C. Leung, C. Miao, Uav-assisted wireless energy and data transfer with deep reinforcement learning, IEEE Trans. Cognit. Commun. Netw. 7 (1) (2021) 85-99.

[10]

Y. Yang, S. Ding, Y. Liu, S. Meng, X. Chi, R. Ma, C. Yan, Fast wireless sensor for anomaly detection based on data stream in an edge-computing-enabled smart greenhouse, Digit. Commun. Netw. 8 (4) (2022) 498-507.

[11]

Z. Cai, Z. He, Trading private range counting over big iot data, in: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), 2019, pp. 144-153.

[12]

A. Singh, S. Sharma, J. Singh, Nature-inspired algorithms for wireless sensor networks: a comprehensive survey, Comput. Sci. Rev. 39 (2021) 100342.

[13]

Y. Li, H. Ma, L. Wang, S. Mao, G. Wang, Optimized content caching and user association for edge computing in densely deployed heterogeneous networks, IEEE Trans. Mobile Comput. 21 (6) (2022) 2130-2142.

[14]

S. He, J. Chen, Y. Shu, X. Cui, K. Shi, C. Wei, Z. Shi, Efficient fault-tolerant information barrier coverage in internet of things, IEEE Trans. Wireless Commun. 20 (12) (2021) 7963-7976.

[15]

F. Xing, S. He, V.C.M. Leung, H. Yin, Energy efficiency optimization for rate-splitting multiple access-based indoor visible light communication networks, IEEE J. Sel. Area. Commun. 40 (5) (2022) 1706-1720.

[16]

J. Gao, R. Wu, J. Hao, C. Xu, H. Guo, Swipt-based energy scheduling for solar-powered WSN in full-duplex mode, IEEE Sensor. J. 22 (13) (2022) 13668-13681.

[17]

D. Ma, G. Lan, M. Hassan, W. Hu, S.K. Das, Sensing, computing, and communications for energy harvesting IoTs: a survey, IEEE Commun. Surv. Tutorials 22 (2) (2020) 1222-1250.

[18]

S. Xia, Z. Yao, Y. Li, S. Mao, Online distributed offloading and computing resource management with energy harvesting for heterogeneous MEC-enabled IoT, IEEE Trans. Wireless Commun. 20 (10) (2021) 6743-6757.

[19]

H. Dai, Y. Xu, G. Chen, W. Dou, C. Tian, X. Wu, T. He, Rose: robustly safe charging for wireless power transfer, IEEE Trans. Mobile Comput. 21 (6) (2022) 2180-2197.

[20]

X. Zhu, M. Zhou, A. Abusorrah, Optimizing node deployment in rechargeable camera sensor networks for full-view coverage, IEEE Internet Things J. 9 (13) (2022) 11396-11407.

[21]

Z. Molamohamadi, M. Talaei, Analysis of a proper strategy for solar energy deployment in Iran using SWOT matrix, Renew. Energy Res. Appl. 3 (1) (2022) 71-78.

[22]

B. Wang, Sensor Coverage Model, Springer, London, 2010.

[23]

B. Wang, X. Deng, W. Liu, L.T. Yang, H.-C. Chao, Confident information coverage in sensor networks for field reconstruction, IEEE Wireless Commun. 20 (6) (2013) 74-81.

[24]

Y. Xia, X. Deng, L. Yi, L.T. Yang, X. Tang, C. Zhu, Z. Tian, AI-driven and MEC-empowered confident information coverage hole recovery in 6G-enabled IoT, IEEE Trans. Netw. Sci. Eng. 10 (3) (2023) 1256-1269.

[25]

O. Gungor, T.S. Rosing, B. Aksanli, Respireþþ: robust indoor sensor placement optimization under distance uncertainty, IEEE Sensor. J. 22 (12) (2022) 11355-11363.

[26]

J. Huang, Y. Meng, X. Gong, Y. Liu, Q. Duan, A novel deployment scheme for green Internet of Things, IEEE Internet Things J. 1 (2) (2014) 196-205.

[27]

M. Wang, J. Zeng, Hierarchical clustering nodes collaborative scheduling in wireless sensor network, IEEE Sensor. J. 22 (2) (2022) 1786-1798.

[28]

G. Tsoumanis, K. Oikonomou, S. Aïssa, I. Stavrakakis, Energy and distance optimization in rechargeable wireless sensor networks, IEEE Trans. Green Commun. Netw. 5 (1) (2021) 378-391.

[29]

W. Xu, W. Liang, X. Jia, H. Kan, Y. Xu, X. Zhang, Minimizing the maximum charging delay of multiple mobile chargers under the multi-node energy charging scheme, IEEE Trans. Mobile Comput. 20 (5) (2021) 1846-1861.

[30]

S. Li, L. Fu, S. He, Y. Sun, Near-optimal co-deployment of chargers and sink stations in rechargeable sensor networks, ACM Trans. Embed. Comput. Syst. 17 (1) (2017) 1-19.

[31]

J. Hu, J. Luo, Y. Zheng, K. Li, Graphene-grid deployment in energy harvesting cooperative wireless sensor networks for green IoT, IEEE Trans. Ind. Inf. 15 (3)(2019) 1820-1829.

[32]

Y. Liu, K.-W. Chin, C. Yang, T. He, Nodes deployment for coverage in rechargeable wireless sensor networks, IEEE Trans. Veh. Technol. 68 (6) (2019) 6064-6073.

[33]

V. Chvatal, A greedy heuristic for the set-covering problem, Math. Oper. Res. 4 (3)(1979) 233-235.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/