Index modulation aided generalized space-time block coding: A unified MIMO framework

Zhiqin Wang , Hui Liu , Lixia Xiao , Liuke Li , Guochao Song , Tao Jiang

›› 2024, Vol. 10 ›› Issue (5) : 1459 -1470.

PDF
›› 2024, Vol. 10 ›› Issue (5) :1459 -1470. DOI: 10.1016/j.dcan.2023.02.008
Research article
research-article

Index modulation aided generalized space-time block coding: A unified MIMO framework

Author information +
History +
PDF

Abstract

In this paper, Index Modulation (IM) aided Generalized Space-Time Block Coding (GSTBC) is proposed, which intrinsically exploits the benefits of IM concept, diversity gain and spatial multiplexing gain. Specifically, the information bits are partitioned into U groups, with each being modulated by IM symbols (i.e. Spatial Modulation (SM), Quadrature SM (QSM),etc). Next, the structure of GSTBC is invoked for each K IM symbol, and a total of μ ​= ​U/K GSTBC codes are transmitted via T time slots. A Block Expectation Propagation (B-EP) detector is designed for the proposed IM-GSTBC structure. Moreover, the theoretical Average Bit Error Probability (ABEP) is derived for our IM-GSTBC system, which is confirmed by the simulation results and helpful for performance evaluation. Simulation results show that our proposed IM-GSTBC system is capable of striking an efficient trade-off between spatial multiplexing gain, spatial diversity gain as well as implementation cost imposed for both small-scale and large-scale MIMO antenna configurations.

Keywords

Index modulation (IM) / Generalized space time block coding (GSTBC) / Spatial multiplexing gain / Diversity gain / Block expectation propagation (B-EP)

Cite this article

Download citation ▾
Zhiqin Wang, Hui Liu, Lixia Xiao, Liuke Li, Guochao Song, Tao Jiang. Index modulation aided generalized space-time block coding: A unified MIMO framework. , 2024, 10(5): 1459-1470 DOI:10.1016/j.dcan.2023.02.008

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

P. Wolniansky, G. Foschini, G. Golden, R. Valenzuela, V-blast, An architecture for realizing very high data rates over the rich-scattering wireless channel, in: 1998 URSI International Symposium on Signals, Systems, and Electronics, 1998, pp. 295-300.

[2]

H. Jafarkhani, Space-time Coding: Theory and Practice, Cambridge Univ. Press, Cambridge, U.K., 2005.

[3]

B. Sundar Rajan, P.A. Chockalingam, Large MIMO Systems, Cambridge Univ. Press, Cambridge, U.K., 2014.

[4]

P. Yang, Y. Xiao, Y.L. Guan, K. Hari, A. Chockalingam, S. Sugiura, H. Haas, M. Di Renzo, C. Masouros, Z. Liu, L. Xiao, S. Li, L. Hanzo, Single-carrier sm-mimo: a promising design for broadband large-scale antenna systems, IEEE Commun. Survey Tutorial. 18 (3) (2016) 1687-1716.

[5]

Y. Chen, W. Liu, Z. Niu, Z. Feng, Q. Hu, T. Jiang, Pervasive intelligent endogenous 6g wireless systems: prospects, theories and key technologies, Digital. Commun. Network. 6 (3) (2020) 312-320.

[6]

R.Y. Mesleh, H. Haas, S. Sinanovic, C.W. Ahn, S. Yun, Spatial modulation, IEEE Trans. Veh. Technol. 57 (4) (2008) 2228-2241.

[7]

S. Guo, H. Zhang, S. Jin, P. Zhang, Spatial modulation via 3-d mapping, IEEE Commun. Lett. 20 (6) (2016) 1096-1099.

[8]

R. Mesleh, S. Althunibat, A. Younis, Differential quadrature spatial modulation, IEEE Trans. Commun. 65 (9) (2017) 3810-3817.

[9]

S.K. El Dyasti, E.A. Hagras, H. El-Hennawy, Qsm-idm - a novel quadrature spatial modulation based on interleaving division multiplexing for multiple antenna system, Digital. Commun. Network. 5 (3) (2019) 183-188.

[10]

T. Lakshmi Narasimhan, P. Raviteja, A. Chockalingam, Generalized spatial modulation in large-scale multiuser mimo systems, IEEE Trans. Wireless Commun. 14 (7) (2015) 3764-3779.

[11]

G. Li, Z. Hong, Y. Pang, Y. Xu, Z. Huang, Resource allocation for sum-rate maximization in noma-based generalized spatial modulation, Digital. Commun. Network. (2022), https://doi.org/10.1016/j.dcan.2022.02.005.

[12]

P. Yang, Y. Xiao, M. Xiao, S. Li,6g wireless communications: vision and potential techniques, IEEE Network 33 (4) (2019) 70-75.

[13]

N. Ishikawa, R. Rajashekar, S. Sugiura, L. Hanzo, Generalized-spatial-modulation-based reduced-rf-chain millimeter-wave communications, IEEE Trans. Veh. Technol. 66 (1) (2017) 879-883.

[14]

H. Sarieddeen, M.-S. Alouini, T.Y. Al-Naffouri, Terahertz-band ultra-massive spatial modulation mimo, IEEE J. Sel. Area. Commun. 37 (9) (2019) 2040-2052.

[15]

N. Bouhlel, M. Saad, F. Bader, Sub-terahertz wireless system using dual-polarized generalized spatial modulation with rf impairments, IEEE J. Sel. Area. Commun. 39(6) (2021) 1636-1650.

[16]

E. Basar, Reconfigurable intelligent surface-based index modulation: a new beyond mimo paradigm for 6g, IEEE Trans. Commun. 68 (5) (2020) 3187-3196.

[17]

M. Wu, X. Lei, X. Zhou, Y. Xiao, X. Tang, R.Q. Hu, Reconfigurable intelligent surface assisted spatial modulation for symbiotic radio, IEEE Trans. Veh. Technol. 70 (12)(2021) 12918-12931.

[18]

M. Au, G. Kaddoum, M.S. Alam, E. Basar, F. Gagnon, Joint code-frequency index modulation for iot and multi-user communications, IEEE J. Select Topic. Signal Process. 13 (6) (2019) 1223-1236.

[19]

L. Xiao, Y. Xiao, C. Xu, X. Lei, P. Yang, S. Li, L. Hanzo, Compressed-sensing assisted spatial multiplexing aided spatial modulation, IEEE Trans. Wireless Commun. 17 (2) (2018) 794-807.

[20]

L. Xiao, P. Xiao, Z. Liu, W. Yu, H. Haas, L. Hanzo, A compressive sensing assisted massive sm-vblast system: error probability and capacity analysis, IEEE Trans. Wireless Commun. 19 (3) (2020) 1990-2005.

[21]

L. Xiao, P. Xiao, Y. Xiao, H. Haas, A. Mohamed, L. Hanzo, Compressive sensing assisted generalized quadrature spatial modulation for massive mimo systems, IEEE Trans. Commun. 67 (7) (2019) 4795-4810.

[22]

S. Sugiura, S. Chen, L. Hanzo, Coherent and differential space-time shift keying: a dispersion matrix approach, IEEE Trans. Commun. 58 (11) (2010) 3219-3230.

[23]

S. Sugiura, S. Chen, L. Hanzo, Generalized space-time shift keying designed for flexible diversity-, multiplexing- and complexity-tradeoffs, IEEE Trans. Wireless Commun. 10 (4) (2011) 1144-1153.

[24]

E. Başar, U. Ayg€olü, E. Panayirci, H.V. Poor, Space-time block coded spatial modulation, IEEE Trans. Commun. 59 (3) (2011) 823-832.

[25]

X. Li, L. Wang, High rate space-time block coded spatial modulation with cyclic structure, IEEE Commun. Lett. 18 (4) (2014) 532-535.

[26]

C. Jeon, J.W. Lee, Multi-strata space-time coded spatial modulation, IEEE Commun. Lett. 19 (11) (2015) 1945-1948.

[27]

Y. Hua, G. Zhao, W. Zhao, M. Jin, Modified codewords design for space-time block coded spatial modulation, IET Commun. 11 (2) (2017) 249-257.

[28]

M.C. Park, B.G. Jo, D.S. Han, Double space-time transmit diversity with spatial modulation, Electron. Lett. 51 (25) (2015) 2155-2156.

[29]

L. Xiao, Y. Xiao, L. You, P. Yang, S. Li, L. Hanzo, Single-rf and twin-rf spatial modulation for an arbitrary number of transmit antennas, IEEE Trans. Veh. Technol. 67 (7) (2018) 6311-6324.

[30]

L. Xiao, P. Xiao, Y. Xiao, I. Hemadeh, A. Mohamed, L. Hanzo, Bayesian compressive sensing assisted space-time block coded quadrature spatial modulation, IEEE Trans. Veh. Technol. 67 (10) (2018) 10044-10048.

[31]

L. Wang, Space-frequency coded quadrature index modulation with linear maximum likelihood detection, IEEE Trans. Veh. Technol. 70 (10) (2021) 11056-11061.

[32]

L. Xiao, D. Chen, I. Hemadeh, P. Xiao, T. Jiang, Generalized space time block coded spatial modulation for open-loop massive mimo downlink communication systems, IEEE Trans. Commun. 68 (11) (2020) 6858-6871.

[33]

L. Wang, Z. Chen, Stacked alamouti based spatial modulation, IEEE Trans. Commun. 67 (1) (2019) 336-349.

[34]

G. Yao, H. Chen, J. Hu, An improved expectation propagation based detection scheme for mimo systems, IEEE Trans. Commun. 69 (4) (2021) 2163-2175.

AI Summary AI Mindmap
PDF

92

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/