Diversified and compatible web APIs recommendation based on game theory in IoT

Wenwen Gong , Huiping Wu , Xiaokang Wang , Xuyun Zhang , Yawei Wang , Yifei Chen , Mohammad R. Khosravi

›› 2024, Vol. 10 ›› Issue (4) : 1198 -1209.

PDF
›› 2024, Vol. 10 ›› Issue (4) :1198 -1209. DOI: 10.1016/j.dcan.2023.02.002
Research article
research-article

Diversified and compatible web APIs recommendation based on game theory in IoT

Author information +
History +
PDF

Abstract

L With the ever-increasing popularity of Internet of Things (IoT), massive enterprises are attempting to encapsulate their developed outcomes into various lightweight Web Application Programming Interfaces (APIs) that can be accessible remotely. In this context, finding and writing a list of existing Web APIs that can collectively meet the functional needs of software developers has become a promising approach to economically and easily develop successful mobile applications. However, the number and diversity of candidate IoT Web APIs places an additional burden on application developers’ Web API selection decisions, as it is often a challenging task to simultaneously ensure the diversity and compatibility of the final set of Web APIs selected. Considering this challenge and latest successful applications of game theory in IoT, a Diversified and Compatible Web APIs Recommendation approach, namely DivCAR, is put forward in this paper. First of all, to achieve API diversity, DivCAR employs random walk sampling technique on a pre-built “API-API” correlation graph to generate diverse “API-API” correlation subgraphs. Afterwards, with the diverse “API-API” correlation subgraphs, the compatible Web APIs recommendation problem is modeled as a minimum group Steiner tree search problem. A sorted set of multiple compatible and diverse Web APIs are returned to the application developer by solving the minimum group Steiner tree search problem. At last, a set of experiments are designed and implemented on a real dataset crawled from www.programmableweb.com. Experimental results validate the effectiveness and efficiency of our proposed DivCAR approach in balancing the Web APIs recommendation diversity and compatibility.

Keywords

Internet of things / Web APIs recommendation / Game theory / Diversity and compatibility

Cite this article

Download citation ▾
Wenwen Gong, Huiping Wu, Xiaokang Wang, Xuyun Zhang, Yawei Wang, Yifei Chen, Mohammad R. Khosravi. Diversified and compatible web APIs recommendation based on game theory in IoT. , 2024, 10(4): 1198-1209 DOI:10.1016/j.dcan.2023.02.002

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

N. Almarimi, A. Ouni, S. Bouktif, M.W. Mkaouer, R.G. Kula, M.A. Saied, Web service api recommendation for automated mashup creation using multi-objective evolutionary search, Appl. Soft Comput. J. 85 (2019) 105830.

[2]

Y. Liu, A. Pei, F. Wang, Y. Yang, X. Zhang, H. Wang, H. Dai, L. Qi, R. Ma, An attention-based category-aware gru model for the next poi recommendation, Int. J. Intell. Syst. 36 (7) (2021) 3174-3189.

[3]

H. Kou, H. Liu, Y. Duan, W. Gong, Y. Xu, X. Xu, L. Qi, Building trust/distrust relationships on signed social service network through privacy-aware link prediction process, Appl. Soft Comput. 100 (2021) 106942.

[4]

B. Cao, X.F. Liu, M.M. Rahman, B. Li, J. Liu, M. Tang, Integrated content and network-based service clustering and web apis recommendation for mashup development, IEEE Transact. Serv. Comput. 13 (1) (2020) 99-113.

[5]

Y. Hao, Y. Fan, W. Tan, J. Zhang, Service recommendation based on targeted reconstruction of service descriptions, in: 2017 IEEE International Conference on Web Services (ICWS), 2017, pp. 285-292.

[6]

A. Segev, E. Toch, Context-based matching and ranking of web services for composition, IEEE Transact. Serv. Comput. 2 (3) (2009) 210-222.

[7]

M. Jiang, W.C. Fu, C.W. Wong, Exact top-k nearest keyword search in large networks, SIGMOD ’15, in:Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, 2015, pp. 393-404.

[8]

D. Ardagna, B. Pernici,Global and local qos guarantee in web service selection, Business Process Manag. Workshop 1 (4) (2006) 233-243.

[9]

A. Ouni, R.G. Kula, M. Kessentini, T. Ishio, D.M. German, K. Inoue, Search-based software library recommendation using multi-objective optimization, Inf. Software Technol. 83 (2017) 55-75.

[10]

W. Gong, L. Qi, Y. Xu, Privacy-aware multidimensional mobile service quality prediction and recommendation in distributed fog environment, Wireless Commun. Mobile Comput. (2018). Article ID 3075849, 1-8.

[11]

M.K. A, T.P. B, Diversity in recommender systems-a survey, Knowl. Base Syst. 123 (2017) 154-162.

[12]

E. Al-Masri, Q.H. Mahmoud,Qos-based discovery and ranking of web services, in:Proceedings of the 16th International Conference on Computer Communications and Networks, 2007, pp. 529-534.

[13]

L. Yao, Q.Z. Sheng, A. Segev, J. Yu, Recommending Web Services via Combining Collaborative Filtering with Content-Based Features, 2013, pp. 42-49, https://doi.org/10.1109/ICWS.2013.16.

[14]

L. Yao, Q.Z. Sheng, A.H.H. Ngu, J. Yu, A. Segev, Unified collaborative and content-based web service recommendation, IEEE Transact. Serv. Comput. 8 (3) (2015) 453-466.

[15]

Y. Zhong, Y. Fan, W. Tan, J. Zhang, Web service recommendation with reconstructed profile from mashup descriptions, IEEE Trans. Autom. Sci. Eng. 15 (2)(2018) 468-478.

[16]

L. Hc, L. Jx, C. Bq, S. M, Topic-adaptive web api recommendation method via integrating multidimensional information, IEEE Trans. Autom. Sci. Eng. 15 (2) (2018) 468-478.

[17]

R. Xiong, J. Wang, N. Zhang, Y. Ma, Deep hybrid collaborative filtering for web service recommendation, Expert Syst. Appl. 110 (2018) 191-205.

[18]

H. Wu, Z. Zhang, K. Yue, B. Zhang, J. He, L. Sun, Dual-regularized matrix factorization with deep neural networks for recommender systems, Knowl. Base Syst. 145 (2018) 46-58.

[19]

L. Huang, M. Fu, F. Li, H. Qu, Y. Liu, W. Chen, A deep reinforcement learning based long-term recommender system, Knowl. Base Syst. 213 (2021) 106706.

[20]

J. Tang, R. Li, K. Wang, X. Gu, Z. Xu, A novel hybrid method to analyze security vulnerabilities in android applications, Tsinghua Sci. Technol. 25 (5) (2020) 589-603.

[21]

B. Xia, Y. Fan, W. Tan, K. Huang, J. Zhang, C. Wu, Category-aware api clustering and distributed recommendation for automatic mashup creation, IEEE Transact. Serv. Comput. 8 (5) (2015) 674-687.

[22]

W. Gao, L. Chen, J. Wu, H. Gao, Manifold-learning based api recommendation for mashup creation, in: 2015 IEEE International Conference on Web Services (ICWS), 2015, pp. 432-439.

[23]

W. Gao, J. Wu, A novel framework for service set recommendation in mashup creation, in: 2017 IEEE International Conference on Web Services (ICWS), 2017, pp. 65-72.

[24]

Q. Gu, J. Cao, Q. Peng, Service package recommendation for mashup creation via mashup textual description mining, in: 2016 IEEE International Conference on Web Services (ICWS), 2016, pp. 452-459.

[25]

G. Kang, M. Tang, J. Liu, X. Liu, B. Cao, Diversifying web service recommendation results via exploring service usage history, IEEE Transact. Serv. Comput. 9 (4) (2016) 566-579.

[26]

Y. Jin, W. Guo, Y. Zhang, A time-aware dynamic service quality prediction approach for services, Tsinghua Sci. Technol. 25 (2) (2019) 227-238.

[27]

H. Cheng, M. Zhong, J. Wang, Diversified keyword search based web service composition, J. Syst. Software 163 (2020) 110540.

[28]

L. Gu, P. Yang, Y. Dong, Diversity optimization for recommendation using improved cover tree, Knowl. Base Syst. 135 (nov.1) (2017) 1-8.

[29]

Q. He, B. Li, F. Chen, J. Grundy, Y. Yang, Diversified third-party library prediction for mobile app development, IEEE Trans. Software Eng. 48 (1) (2020) 150-165.

[30]

L. Wang, X. Zhang, R. Wang, C. Yan, L. Qi, Diversified service recommendation with high accuracy and efficiency, Knowl. Base Syst. 204 (2020) 106196.

[31]

L. Yao, X. Wang, Q.Z. Sheng, B. Benatallah, C. Huang, Mashup recommendation by regularizing matrix factorization with api co-invocations, IEEE Transact. Serv. Comput. 14 (2) (2021) 505-521.

[32]

G. Huang, Y. Ma, X. Liu, Y. Luo, X. Lu, M.B. Blake, Model-based automated navigation and composition of complex service mashups, IEEE Transact. Serv. Comput. 8 (3) (2015) 494-506.

[33]

N. Chen, N. Cardozo, S. Clarke, Goal-driven service composition in mobile and pervasive computing, IEEE Transact. Serv. Comput. 11 (1) (2018) 49-62.

[34]

L. Qi, Q. He, F. Chen, W. Dou, Q. Ni, Data-driven web apis recommendation for building web applications, IEEE Trans. on Big Data. 8(3) (2020), 685-698.

[35]

L. Qi, Q. He, F. Chen, W. Dou, S. Wan, X. Zhang, X. Xu, Finding all you need: web apis recommendation in web of things through keywords search, IEEE Trans. Comput. Soc. Syst. 6 (5) (2019) 1063-1072.

[36]

W. Gong, C. Lv, Y. Duan, Z. Liu, M.R. Khosravi, W. Dou, Keywords-driven web apis group recommendation for automatic app service creation process, Software Pract. Ex. 51 (11) (2020) 2337-2354.

[37]

M.S. Mahmud, J.Z. Huang, S. Salloum, T.Z. Emara, K. Sadatdiynov, A survey of data partitioning and sampling methods to support big data analysis, Big Data Mining Anal. 3 (2) (2020) 85-101.

[38]

Y. Khazbak, J. Fan, S. Zhu, G. Cao, Preserving personalized location privacy in ride-hailing service, Tsinghua Sci. Technol. 25 (6) (2020) 743-757.

[39]

M.R. Garey, D.S. Johnson, The rectilinear steiner tree problem is np-complete, SIAM J. Appl. Math. 32 (4) (1977) 826-834.

[40]

F.K. Hwang, D. Richards, Pawel Winter, The steiner tree problem, Networks 22 (1)(1992) 55-89.

[41]

N. Bhardwaj, P. Sharma, An advanced uncertainty measure using fuzzy soft sets: application to decision-making problems, Big Data Mining Anal. 4 (2) (2021) 94-103.

[42]

J. Leskovec, C. Faloutsos,Sampling from large graphs, in:Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2006, pp. 631-636, https://doi.org/10.1145/1150402.1150479.

[43]

L. Wang, X. Zhang, T. Wang, S. Wan, G. Srivastava, S. Pang, L. Qi, Diversified and scalable service recommendation with accuracy guarantee, IEEE Trans. Comput. Soc. Syst. 8 (5) (2020) 1182-1193.

[44]

L. Qi, H. Song, X. Zhang, G. Srivastava, X. Xu, S. Yu, Compatibility-aware web api recommendation for mashup creation via textual description mining, ACM Trans. Multimed Comput. Commun. Appl 17 (1s) (2021) 1-19.

[45]

L. Qi, C. Hu, X. Zhang, M.R. Khosravi, S. Sharma, S. Pang, T. Wang, Privacy-aware data fusion and prediction with spatial-temporal context for smart city industrial environment, IEEE Trans. Ind. Inf. 17 (6) (2020) 4159-4167.

[46]

L. Qi, X. Wang, X. Xu, W. Dou, S. Li, Privacy-aware cross-platform service recommendation based on enhanced locality-sensitive hashing, IEEE Trans. Network Sci. Eng. 8 (2020) 1145-1153.

[47]

A. Borodin, A. Jain, H.C. Lee, Y. Ye, Max-sum diversification, monotone submodular functions, and dynamic updates, ACM Trans. Algorithm 13 (3) (2017) 1-25.

AI Summary AI Mindmap
PDF

74

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/