Deep radio signal clustering with interpretability analysis based on saliency map

Huaji Zhou , Jing Bai , Yiran Wang , Junjie Ren , Xiaoniu Yang , Licheng Jiao

›› 2024, Vol. 10 ›› Issue (5) : 1448 -1458.

PDF
›› 2024, Vol. 10 ›› Issue (5) :1448 -1458. DOI: 10.1016/j.dcan.2023.01.010
Research article
research-article

Deep radio signal clustering with interpretability analysis based on saliency map

Author information +
History +
PDF

Abstract

With the development of information technology, radio communication technology has made rapid progress. Many radio signals that have appeared in space are difficult to classify without manually labeling. Unsupervised radio signal clustering methods have recently become an urgent need for this situation. Meanwhile, the high complexity of deep learning makes it difficult to understand the decision results of the clustering models, making it essential to conduct interpretable analysis. This paper proposed a combined loss function for unsupervised clustering based on autoencoder. The combined loss function includes reconstruction loss and deep clustering loss. Deep clustering loss is added based on reconstruction loss, which makes similar deep features converge more in feature space. In addition, a features visualization method for signal clustering was proposed to analyze the interpretability of autoencoder utilizing Saliency Map. Extensive experiments have been conducted on a modulated signal dataset, and the results indicate the superior performance of our proposed method over other clustering algorithms. In particular, for the simulated dataset containing six modulation modes, when the SNR is 20 ​dB, the clustering accuracy of the proposed method is greater than 78%. The interpretability analysis of the clustering model was performed to visualize the significant features of different modulated signals and verified the high separability of the features extracted by clustering model.

Keywords

Unsupervised radio signal clustering / Autoencoder / Clustering features visualization / Deep learning interpretability

Cite this article

Download citation ▾
Huaji Zhou, Jing Bai, Yiran Wang, Junjie Ren, Xiaoniu Yang, Licheng Jiao. Deep radio signal clustering with interpretability analysis based on saliency map. , 2024, 10(5): 1448-1458 DOI:10.1016/j.dcan.2023.01.010

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Shafi, A.F. Molisch, P.J. Smith, T. Haustein, P. Zhu, P. De Silva, F. Tufvesson, A. Benjebbour, G. Wunder, 5g: a tutorial overview of standards, trials, challenges, deployment, and practice, IEEE J. Sel. Area. Commun. 35 (6) (2017) 1201-1221.

[2]

R. Li, Z. Zhao, X. Zhou, G. Ding, Y. Chen, Z. Wang, H. Zhang, Intelligent 5g: when cellular networks meet artificial intelligence, IEEE Wireless Commun. 24 (5) (2017) 175-183.

[3]

D. Yu, C. Li, An accurate wifi indoor positioning algorithm for complex pedestrian environments, IEEE Sensor. J. 21 (21) (2021) 24440-24452.

[4]

M. Wang, Y. Lin, Q. Tian, G. Si, Transfer learning promotes 6g wireless communications: recent advances and future challenges, IEEE Trans. Reliab. 70 (2)(2021) 790-807.

[5]

H. Zhou, L. Jiao, S. Zheng, L. Yang, W. Shen, X. Yang, Generative adversarial network-based electromagnetic signal classification: a semi-supervised learning framework, Chin. Commun. 17 (10) (2020) 157-169.

[6]

Y. Lin, Y. Tu, Z. Dou, L. Chen, S. Mao, Contour stella image and deep learning for signal recognition in the physical layer, IEEE Trans. Cognitive Commun. Network. 7 (1) (2020) 34-46.

[7]

T. Ya, L. Yun, Z. Haoran, J. Zhang, W. Yu, G. Guan, M. Shiwen, Large-scale real-world radio signal recognition with deep learning, Chin. J. Aeronaut. 35 (9) (2022) 35-48.

[8]

S. Zhang, L. Yun, T. Ya, S. Mao, Electromagnetic signal modulation recognition technology based on lightweight deep neural network, J. Commun. 41 (11) (2020) 12-21.

[9]

X. Yao, A. Newson, Y. Gousseau, P. Hellier,A latent transformer for disentangled face editing in images and videos, in:Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 13789-13798.

[10]

X.-B. Nguyen, D.T. Bui, C.N. Duong, T.D. Bui, K. Luu, Clusformer: a transformer based clustering approach to unsupervised large-scale face and visual landmark recognition,in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 10847-10856.

[11]

A.I. Karoly, R. Fuller, P. Galambos, Unsupervised clustering for deep learning: a tutorial survey, Acta Polytechnica Hungarica. 15 (8) (2018) 29-53.

[12]

R. Xu, D. Wunsch, Survey of clustering algorithms, IEEE Trans. Neural Network. 16 (3) (2005) 645-678.

[13]

J. MacQueen, et al., Some methods for classification and analysis of multivariate observations,in: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, 1967, pp. 281-297. Oakland, CA, USA.

[14]

U. Von Luxburg, A tutorial on spectral clustering, Stat. Comput. 17 (4) (2007) 395-416.

[15]

W.H.L. Pinaya, S. Vieira, R. Garcia-Dias, A. Mechelli, Autoencoders, in: Machine Learning, Elsevier, 2020, pp. 193-208.

[16]

B. Yang, X. Fu, N.D. Sidiropoulos, M. Hong, Towards k-means-friendly spaces: simultaneous deep learning and clustering,in:International Conference on Machine Learning, PMLR, 2017, pp. 3861-3870.

[17]

N. Mrabah, N.M. Khan, R. Ksantini, Z. Lachiri, Deep clustering with a dynamic autoencoder: from reconstruction towards centroids construction, Neural Network. 130 (2020) 206-228.

[18]

J. Bai, Y. Wang, Z. Xiao, M. Alazab, Rffae-s: autoencoder based on random fourier feature with separable loss for unsupervised signal modulation clustering, IEEE Trans. Ind. Inf. 18 (11) (2022) 7910-7919.

[19]

Q. Zhang, Y. Yang, H. Ma, Y.N. Wu,Interpreting cnns via decision trees, in:Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 6261-6270.

[20]

M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks, in: European Conference on Computer Vision, Springer, 2014, pp. 818-833.

[21]

J. T. Springenberg, A. Dosovitskiy, T. Brox,M. Riedmiller, Striving for Simplicity: the All Convolutional Net, arXiv preprint arXiv:1412.6806.

[22]

D.G. Garson, Interpreting Neural Network Connection Weights, AI Expert 6 (4) (1991) 46-51.

[23]

S.M. Lundberg, S.-I. Lee,A unified approach to interpreting model predictions, in:Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, pp. 4768-4777.

[24]

B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba,Learning deep features for discriminative localization, in:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2921-2929.

[25]

R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-cam: visual explanations from deep networks via gradient-based localization,in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 618-626.

[26]

A. Chattopadhay, A. Sarkar, P. Howlader, V.N. Balasubramanian, Grad-camþþ: generalized gradient-based visual explanations for deep convolutional networks, in: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE, 2018, pp. 839-847.

[27]

H. Wang, Z. Wang, M. Du, F. Yang, Z. Zhang, S. Ding, P. Mardziel, X. Hu, Score-cam: score-weighted visual explanations for convolutional neural networks,in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020, pp. 24-25.

[28]

H.G. Ramaswamy, et al., Ablation-cam: visual explanations for deep convolutional network via gradient-free localization,in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020, pp. 983-991.

[29]

M. Liu, J. Shi, Z. Li, C. Li, J. Zhu, S. Liu, Towards better analysis of deep convolutional neural networks, IEEE Trans. Visual. Comput. Graph. 23 (1) (2016) 91-100.

[30]

C. Olah, A. Satyanarayan, I. Johnson, S. Carter, L. Schubert, K. Ye, A. Mordvintsev, The building blocks of interpretability, Distill 3 (3) (2018) e10.

[31]

M.T. Ribeiro, S. Singh, C. Guestrin, Why should i trust you? ” explaining the predictions of any classifier, in:Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 1135-1144.

[32]

M. R. Zafar,N. M. Khan, Dlime: A Deterministic Local Interpretable Model-Agnostic Explanations Approach for Computer-Aided Diagnosis Systems, arXiv preprint arXiv:1906.10263.

[33]

Z.-Q.J. Xu, Frequency principle: fourier analysis sheds light on deep neural networks, Commun. Comput. Phys. 28 (5) (2020) 1746-1767.

[34]

G. Chen,Deep Learning with Nonparametric Clustering, arXiv preprint arXiv: 1501.03084.

[35]

F. Li, H. Qiao, B. Zhang, Discriminatively boosted image clustering with fully convolutional auto-encoders, Pattern Recogn. 83 (2018) 161-173.

[36]

J. Yang, D. Parikh, D. Batra,Joint unsupervised learning of deep representations and image clusters, in:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 5147-5156.

[37]

Z. Huaji, B. Jing, W. Yiran, J. Licheng, S. Zheng, S. Weiguo, X. Jie, Y. Xiaoniu, Few-shot electromagnetic signal classification: a data union augmentation method, Chin. J. Aeronaut. 35 (9) (2022) 49-57.

[38]

P. Qi, X. Zhou, S. Zheng, Z. Li, Automatic modulation classification based on deep residual networks with multimodal information, IEEE Trans. Cognitive Commun. Network. 7 (1) (2020) 21-33.

[39]

E. Khorov, A. Kiryanov, A. Lyakhov, G. Bianchi,A tutorial on ieee 802.11 ax high efficiency wlans, IEEEn Commun. Survey Tutorial. 21 (1) (2018) 197-216.

[40]

D. Cai, X. He, J. Han, Locally consistent concept factorization for document clustering, IEEE Trans. Knowl. Data Eng. 23 (6) (2010) 902-913.

[41]

P.A. Estevez, M. Tesmer, C.A. Perez, J.M. Zurada, Normalized mutual information feature selection, IEEE Trans. Neural Network. 20 (2) (2009) 189-201.

[42]

H.W. Kuhn, The Hungarian method for the assignment problem, Nav. Res. Logist. 52 (1) (2005) 7-21.

AI Summary AI Mindmap
PDF

78

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/