Analytical modeling of cache-enabled heterogeneous networks using Poisson cluster processes

Junhui Zhao , Lihua Yang , Xiaoting Ma , Ziyang Zhang

›› 2024, Vol. 10 ›› Issue (5) : 1439 -1447.

PDF
›› 2024, Vol. 10 ›› Issue (5) :1439 -1447. DOI: 10.1016/j.dcan.2023.01.003
Research article
research-article

Analytical modeling of cache-enabled heterogeneous networks using Poisson cluster processes

Author information +
History +
PDF

Abstract

The dual frequency Heterogeneous Network (HetNet), including sub-6 GHz networks together with Millimeter Wave (mmWave), achieves the high data rates of user in the networks with hotspots. The cache-enabled HetNets with hotspots are investigated using an analytical framework in which Macro Base Stations (MBSs) and hotspot centers are treated as two independent homogeneous Poisson Point Processes (PPPs), and locations of Small Base Stations (SBSs) and users are modeled as two Poisson Cluster Processes (PCPs). Under the PCP-based modeling method and the Most Popular Caching (MPC) scheme, we propose a cache-enabled association strategy for HetNets with limited storage capacity. The performance of association probability and coverage probability is explicitly derived, and Monte Carlo simulation is utilized to verify that the results are correct. The outcomes of the simulation present the influence of antenna configuration and cache capacities of MBSs and SBSs on network performance. Numerical optimization of the standard deviation ratio of SBSs and users of association probability is enabled by our analysis.

Keywords

Heterogeneous networks / Millimeter wave / Poisson cluster processes / Caching / Stochastic geometry

Cite this article

Download citation ▾
Junhui Zhao, Lihua Yang, Xiaoting Ma, Ziyang Zhang. Analytical modeling of cache-enabled heterogeneous networks using Poisson cluster processes. , 2024, 10(5): 1439-1447 DOI:10.1016/j.dcan.2023.01.003

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. Yang, J. Zhao, F. Gao, Y. Gong, Cluster-based joint resource allocation with successive interference cancellation for ultra-dense networks, Mobile Network. Appl. 26 (3) (2021) 1233-1242.

[2]

J. Zhao, L. Yang, M. Xia, M. Motani, Unified analysis of coordinated multi-point transmissions in mmWave cellular networks, IEEE Internet Things J. 9 (14) (2022) 12166-12180.

[3]

Y.-H. Chiang, W. Liao mw-hierback, A cost-effective and robust millimeter wave hierarchical backhaul solution for HetNets, IEEE Trans. Mobile Comput. 16 (12)(2017) 3445-3458.

[4]

J. Zhao, S. Ni, L. Yang, Z. Zhang, Y. Gong, X. You, Multiband cooperation for 5G HetNets: a promising network paradigm, IEEE Veh. Technol. Mag. 14 (4) (2019) 85-93.

[5]

H. Lin, C. Zhang, Y. Huang, R. Zhao, L. Yang, Performance analysis of cache-enabled user association for hybrid heterogeneous cellular networks, IEEE Trans. Commun. 70 (4) (2022) 2518-2531.

[6]

J. Zhao, J. Liu, L. Yang, B. Ai, S. Ni,Future 5G-oriented system for urban rail transit: opportunities and challenges, China Commun 18 (2) (2021) 1-12.

[7]

M.N. Kulkarni, J.G. Andrews, A. Ghosh, Performance of dynamic and static TDD in self-backhauled millimeter wave cellular networks, IEEE Trans. Wireless Commun. 16 (10) (2017) 6460-6478.

[8]

J. Zhao, Q. Li, Y. Gong, K. Zhang, Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks, IEEE Trans. Veh. Technol. 68 (8) (2019) 7944-7956.

[9]

D. Liu, C. Yang, Caching policy toward maximal success probability and area spectral efficiency of cache-enabled HetNets, IEEE Trans. Commun. 65 (6) (2017) 2699-2714.

[10]

J. Zhao, X. Sun, Q. Li, X. Ma, Edge caching and computation management for real-time internet of vehicles: an online and distributed approach, IEEE Trans. Intell. Transport. Syst. 22 (4) (2020) 2183-2197.

[11]

J. Song, W. Choi, Minimum cache size and backhaul capacity for cache-enabled small cell networks, IEEE Wireless Commun. Lett. 7 (4) (2018) 490-493.

[12]

N. Golrezaei, A.F. Molisch, A.G. Dimakis, G. Caire, Femtocaching and device-to-device collaboration: a new architecture for wireless video distribution, IEEE Commun. Mag. 51 (4) (2013) 142-149.

[13]

S. He, W. Huang, J. Wang, J. Ren, Y. Huang, Y. Zhang, Cache-enabled coordinated mobile edge network: opportunities and challenges, IEEE Wireless Commun. 27 (2)(2020) 204-211.

[14]

Y. Zhu, G. Zheng, L. Wang, K.-K. Wong, L. Zhao, Content placement in cache-enabled sub-6 GHz and millimeter-wave multi-antenna dense small cell networks, IEEE Trans. Wireless Commun. 17 (5) (2018) 2843-2856.

[15]

X. Zhang, T. Lv, W. Ni, J.M. Cioffi, N.C. Beaulieu, Y.J. Guo, Energy-efficient caching for scalable videos in heterogeneous networks, IEEE J. Sel. Area. Commun. 36 (8)(2018) 1802-1815.

[16]

N. Giatsoglou, K. Ntontin, E. Kartsakli, A. Antonopoulos, C. Verikoukis, D2D-aware device caching in mmWave-cellular networks, IEEE J. Sel. Area. Commun. 35 (9)(2017) 2025-2037.

[17]

Z. Chen, J. Lee, T.Q. Quek, M. Kountouris, Cooperative caching and transmission design in cluster-centric small cell networks, IEEE Trans. Wireless Commun. 16 (5)(2017) 3401-3415.

[18]

Q. Ying, Z. Zhao, Y. Zhou, R. Li, X. Zhou, H. Zhang, Characterizing spatial patterns of base stations in cellular networks, in: Proceedings of the 2014 IEEE/CIC International Conference on Communications in China (ICCC), IEEE, 2014, pp. 490-495.

[19]

N. Deng, W. Zhou, M. Haenggi, Heterogeneous cellular network models with dependence, IEEE J. Sel. Area. Commun. 33 (10) (2015) 2167-2181.

[20]

N. Miyoshi, Downlink coverage probability in cellular networks with Poisson-Poisson cluster deployed base stations, IEEE Wireless Commun. Lett. 8 (1)(2018) 5-8.

[21]

W. Bao, B. Liang, Handoff rate analysis in heterogeneous wireless networks with Poisson and Poisson cluster patterns, in: Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing, ACM, 2015, pp. 77-86.

[22]

M. Afshang, H.S. Dhillon, P.H.J. Chong, Coverage and area spectral efficiency of clustered device-to-device networks, in: Proceedings of the 2015 IEEE Global Communications Conference (GLOBECOM), IEEE, 2015, pp. 1-6.

[23]

R.K. Ganti, M. Haenggi, Interference and outage in clustered wireless ad hoc networks, IEEE Trans. Inf. Theor. 55 (9) (2009) 4067-4086.

[24]

V. Suryaprakash, J. Møller, G. Fettweis, On the modeling and analysis of heterogeneous radio access networks using a Poisson cluster process, IEEE Trans. Wireless Commun. 14 (2) (2014) 1035-1047.

[25]

P.D. Mankar, G. Das, S.S. Pathak, Modeling and coverage analysis of BS-centric clustered users in a random wireless network, IEEE Wireless Commun. Lett. 5 (2)(2016) 208-211.

[26]

A. Ullah, Z.H. Abbas, F. Muhammad, G. Abbas, S. Kim, Uplink performance analysis of user-centric small cell aided dense HCNets with uplink-downlink decoupling, IEEE Access 8 (2020) 148460-148474.

[27]

C. Saha, Advances in Stochastic Geometry for Cellular Networks, Ph.D. thesis, Virginia Tech, 2020.

[28]

M. Afshang, H.S. Dhillon, Poisson cluster process based analysis of HetNets with correlated user and base station locations, IEEE Trans. Wireless Commun. 17 (4)(2018) 2417-2431.

[29]

C. Saha, H.S. Dhillon, N. Miyoshi, J.G. Andrews, Unified analysis of HetNets using Poisson cluster processes under max-power association, IEEE Trans. Wireless Commun. 18 (8) (2019) 3797-3812.

[30]

M. Shi, K. Yang, Z. Han, D. Niyato, Coverage analysis of integrated sub-6GHz-mmWave cellular networks with hotspots, IEEE Trans. Commun. 67 (11) (2019) 8151-8164.

[31]

J. Park, S.-L. Kim, J. Zander, Tractable resource management with uplink decoupled millimeter-wave overlay in ultra-dense cellular networks, IEEE Trans. Wireless Commun. 15 (6) (2016) 4362-4379.

[32]

W. Wen, Y. Cui, F.-C. Zheng, S. Jin, Y. Jiang, Random caching based cooperative transmission in heterogeneous wireless networks, IEEE Trans. Commun. 66 (7) (2018) 2809-2825.

[33]

W. Yi, Y. Liu, A. Nallanathan, Cache-enabled HetNets with millimeter wave small cells, IEEE Trans. Commun. 66 (11) (2018) 5497-5511.

[34]

E. Access, Further Advancements for E-UTRA Physical Layer Aspects, vol. 36, 3GPP Technical Specification TR, 2010, p. V2.

[35]

H.S. Dhillon, R.K. Ganti, F. Baccelli, J.G. Andrews, Modeling and analysis of K-tier downlink heterogeneous cellular networks, IEEE J. Sel. Area. Commun. 30 (3) (2012) 550-560.

[36]

D. Stoyan, W.S. Kendall, S.N. Chiu, J. Mecke, Stochastic Geometry and its Applications, John Wiley & Sons, 2013.

[37]

L. Yang, T.J. Lim, J. Zhao, M. Motani, Modeling and analysis of HetNets with interference management using Poisson cluster process, IEEE Trans. Veh. Technol. 70 (11) (2021) 12039-12054.

[38]

N. Deng, M. Haenggi, A fine-grained analysis of millimeter-wave device-to-device networks, IEEE Trans. Commun. 65 (11) (2017) 4940-4954.

[39]

W. Yi, Y. Liu, A. Nallanathan, Cache-enabled HetNets with millimeter wave small cells, IEEE Trans. Commun. 66 (11) (2018) 5497-5511.

[40]

X. Xu, M. Tao, Modeling, analysis, and optimization of coded caching in small-cell networks, IEEE Trans. Commun. 65 (8) (2017) 3415-3428.

[41]

Y. Zhu, G. Zheng, K.-K. Wong, S. Jin, S. Lambotharan, Performance analysis of cache-enabled millimeter wave small cell networks, IEEE Trans. Veh. Technol. 67 (7) (2018) 6695-6699.

[42]

D. Kumar, J. Kaleva, A. T€olli, Blockage-aware reliable mmwave access via coordinated multi-point connectivity, IEEE Trans. Wireless Commun. 20 (7) (2021) 4238-4252.

[43]

C. Slezak, V. Semkin, S. Andreev, Y. Koucheryavy, S. Rangan, Empirical effects of dynamic human-body blockage in 60 GHz communications, IEEE Commun. Mag. 56 (12) (2018) 60-66.

[44]

G.R. MacCartney, T.S. Rappaport, S. Rangan, Rapid fading due to human blockage in pedestrian crowds at 5G millimeter-wave frequencies, in: Proceedings of the 2017 IEEE Global Communications Conference (GLOBECOM), IEEE, 2017, pp. 1-7.

[45]

K. Humadi, I. Trigui, W.-P. Zhu, W. Ajib, Dynamic base station clustering in user-centric mmWave networks: performance analysis and optimization, IEEE Trans. Commun. 69 (7) (2021) 4847-4861.

[46]

L. Yang, J. Zhao, Z. Zhang, Comparative analysis of distance distributions for CoMP-Aided cellular networks using Thomas cluster process, IEEE Commun. Lett. 25 (11)(2021) 3503-3507.

[47]

J.G. Andrews, F. Baccelli, R.K. Ganti, A tractable approach to coverage and rate in cellular networks, IEEE Trans. Commun. 59 (11) (2011) 3122-3134.

[48]

W. Yi, Y. Liu, A. Nallanathan, Modeling and analysis of D2D millimeter-wave networks with Poisson cluster processes, IEEE Trans. Commun. 65 (12) (2017) 5574-5588.

[49]

J.G. Andrews, T. Bai, M.N. Kulkarni, A. Alkhateeb, A.K. Gupta, R.W. Heath, Modeling and analyzing millimeter wave cellular systems, IEEE Trans. Commun. 65 (1) (2016) 403-430.

[50]

T. Bai, R.W. Heath, Coverage and rate analysis for millimeter-wave cellular networks, IEEE Trans. Wireless Commun. 14 (2) (2014) 1100-1114.

[51]

H. Elshaer, M.N. Kulkarni, F. Boccardi, J.G. Andrews, M. Dohler, Downlink and uplink cell association with traditional macrocells and millimeter Wave small cells, IEEE Trans. Wireless Commun. 15 (9) (2016) 6244-6258.

[52]

B. Błaszczyszyn, M. Haenggi, P. Keeler, S. Mukherjee, Stochastic Geometry Analysis of Cellular Networks, Cambridge University Press, 2018.

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/