Application of maximum rank distance codes in designing of STBC-OFDM system for next-generation wireless communications

Arslan Khalid , Prapun Suksompong

›› 2024, Vol. 10 ›› Issue (4) : 1048 -1056.

PDF
›› 2024, Vol. 10 ›› Issue (4) :1048 -1056. DOI: 10.1016/j.dcan.2022.12.022
Research article
research-article

Application of maximum rank distance codes in designing of STBC-OFDM system for next-generation wireless communications

Author information +
History +
PDF

Abstract

Space-Time Block Coded (STBC) Orthogonal Frequency Division Multiplexing (OFDM) satisfies higher data-rate requirements while maintaining signal quality in a multipath fading channel. However, conventional STBCs, including Orthogonal STBCs (OSTBCs), Non-Orthogonal (NOSTBCs), and Quasi-Orthogonal STBCs (QOSTBCs), do not provide both maximal diversity order and unity code rate simultaneously for more than two transmit antennas. This paper targets this problem and applies Maximum Rank Distance (MRD) codes in designing STBC-OFDM systems. By following the direct-matrix construction method, we can construct binary extended finite field MRD-STBCs for any number of transmitting antennas. Work uses MRD-STBCs built over Phase-Shift Keying (PSK) modulation to develop an MRD-based STBC-OFDM system. The MRD-based STBC-OFDM system sacrifices minor error performance compared to traditional OSTBC-OFDM but shows improved results against NOSTBC and QOSTBC-OFDM. It also provides 25% higher data-rates than OSTBC-OFDM in configurations that use more than two transmit antennas. The tradeoffs are minor increases in computational complexity and processing delays.

Keywords

Bit error rate (BER) / Galois field / Maximum rank distance (MRD) codes / Orthogonal frequency division multiplexing (OFDM) / Primitive polynomials / Space-time block codes (STBC)

Cite this article

Download citation ▾
Arslan Khalid, Prapun Suksompong. Application of maximum rank distance codes in designing of STBC-OFDM system for next-generation wireless communications. , 2024, 10(4): 1048-1056 DOI:10.1016/j.dcan.2022.12.022

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. Harkat, P. Monteiro, A. Gameiro, F. Guiomar, H. Farhana Thariq Ahmed, A survey on MIMO-OFDM systems: review of recent trends, Signals 3 (2) (2022) 359-395.

[2]

K. Wu, J.A. Zhang, Z. Ni, X. Huang, Y.J. Guo, S. Chen, Joint Communications and Sensing Employing Optimized MIMO-OFDM Signals, 2022 arXiv preprint arXiv: 2208.09791.

[3]

Y. Zhou, L. Liu, L. Wang, N. Hui, X. Cui, J. Wu, Y. Peng, Y. Qi, C. Xing, Service-aware 6G: an intelligent and open network based on the convergence of communication, computing and caching, Digit. Commun. Netw. 6 (3) (2020) 253-260.

[4]

L. Lu, T. Wang, W. Ni, K. Li, B. Gao, Fog computing-assisted energy-efficient resource allocation for high-mobility MIMO-OFDMA networks, Wireless Commun. Mob. Comput. 2018 (2018) 1-8.

[5]

Y. Zhou, L. Tian, L. Liu, Y. Qi, Fog computing enabled future mobile communication networks: a convergence of communication and computing, IEEE Commun. Mag. 57 (5) (2019) 20-27.

[6]

L. Cimini, Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing, IEEE Trans. Commun. 33 (7) (1985) 665-675.

[7]

J.-K. Choi, H.N. Nguyen, T.H. Nguyen, H. Cho, H.-K. Choi, S.-G. Park, et al., A time-domain estimation method of rapidly time-varying channels for OFDM-based LTE-R systems, Digit. Commun. Netw. 5 (2) (2019) 94-101.

[8]

Z. Wang, G.B. Giannakis, Wireless multicarrier communications, IEEE Signal Process. Mag. 17 (3) (2000) 29-48.

[9]

N. Shah, MIMO-OFDM: Theory to Implementation, University of Southern California, 2005.

[10]

N. Seshadri, J.H. Winters, Two signaling schemes for improving the error performance of frequency division duplex (FDD) transmission systems using transmitter antenna diversity, Int. J. Wireless Inf. Network 1 (1) (1994) 49-60.

[11]

V. Tarokh, N. Seshadri, A.R. Calderbank, Space-time codes for high data rate wireless communication: performance criterion and code construction, IEEE Trans. Inf. Theor. 44 (2) (1998) 744-765.

[12]

S.M. Alamouti, A simple transmit diversity technique for wireless communications, IEEE J. Sel. Area. Commun. 16 (8) (1998) 1451-1458.

[13]

V. Tarokh, H. Jafarkhani, A.R. Calderbank, Space-time block codes from orthogonal designs, IEEE Trans. Inf. Theor. 45 (5) (1999) 1456-1467.

[14]

G. Ganesan, P. Stoica, Space-time block codes: a maximum SNR approach, IEEE Trans. Inf. Theor. 47 (4) (2001) 1650-1656.

[15]

R. Kumar, R. Saxena, Performance analysis of MIMO-STBC systems with higher coding rate using adaptive semiblind channel estimation scheme, The Sci. World J. 2014 (2014) 1-17.

[16]

C. Oestges, B. Clerckx, MIMO Wireless Communications:from Real-World Propagation to Space-Time Code Design, Academic Press, 2010.

[17]

M. Uysal, C. Georghiades, Non-orthogonal space-time block codes for 3Tx antennas, Electron. Lett. 38 (25) (2002) 1689-1691.

[18]

H. Jafarkhani, A quasi-orthogonal space-time block code, IEEE Trans. Commun. 49 (1) (2001) 1-4.

[19]

K.F. Lee, D.B. Williams,A space-time coded transmitter diversity technique for frequency selective fading channels, in:Proceedings of the 2000 IEEE Sensor Array and Multichannel Signal Processing Workshop. SAM 2000 (Cat. No.00EX410), IEEE, 2000, pp. 149-152.

[20]

T.-H. Chang, W.-K. Ma, C.-Y. Chi, Maximum-likelihood detection of orthogonal space-time block coded OFDM in unknown block fading channels, IEEE Trans. Signal Process. 56 (4) (2008) 1637-1649.

[21]

B. Gupta, D.S. Saini, Space-time/space-frequency/space-time-frequency block coded MIMO-OFDM system with equalizers in quasi static mobile radio channels using higher tap order, Wireless Pers. Commun. 69 (4) (2013) 1947-1968.

[22]

T. Mata, K. Naito, P. Boonsrimuang, K. Mori, H. Kobayashi, Proposal of STBC MIMO-OFDM for ITS systems, in: 2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, IEEE, 2013, pp. 1-6.

[23]

R. Gomes, L. Duarte, C. Ribeiro, A. Hammoudeh, R.F. Caldeirinha, A novel MIMO-OFDM alamouti architecture for 5G systems at 26 GHz, in: 2019 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), IEEE, 2019, pp. 1-3.

[24]

E.M. Gabidulin, M. Bossert, P. Lusina, Space-time codes based on rank codes, in: 2000 IEEE International Symposium on Information Theory (Cat. No. 00CH37060), IEEE, 2000, p. 284.

[25]

P. Lusina, E. Gabidulin, M. Bossert, Maximum rank distance codes as space-time codes, IEEE Trans. Inf. Theor. 49 (10) (2003) 2757-2760.

[26]

H.M. Asif, E.M. Gabidulin, B. Honary, Maximum rank distance codes for space time block coding: a comparative study, in: 2011 Fifth International Conference on Next Generation Mobile Applications, Services and Technologies, IEEE, 2011, pp. 206-211.

[27]

H.M. Asif, Analysis of space time block codes and cosets for 5G and its applications, Comput. Commun. 149 (2020) 189-193.

[28]

Y. Liu, M.P. Fitz, O.Y. Takeshita, A rank criterion for QAM space-time codes, IEEE Trans. Inf. Theor. 48 (12) (2002) 3062-3079.

[29]

R. Tang, X. Zhou, C. Wang, Singular value decomposition channel estimation in STBC MIMO-OFDM system, Appl. Sci. 9 (15) (2019) 3067-3085.

[30]

E.G. Larsson, P. Stoica, G. Ganesan, Space-time Block Coding for Wireless Communications, Cambridge university press, UK, 2003.

[31]

R. Tang, X. Zhou, C. Wang, Kalman filter channel estimation in 2×2 and 4×4 STBC MIMO-OFDM systems, IEEE Access 8 (2020) 189089-189105.

[32]

B. Sundar Rajan, in: D. Declerq, M. Fossorier, E. Biglieri (Eds.), Chapter 10 -Space-Time Block Codes, Academic Press Library in Mobile and Wireless Communications, Academic Press, Oxford, 2014, pp. 451-495.

[33]

J.W. Cooley, J.W. Tukey, An algorithm for the machine calculation of complex fourier series, Math. Comput. 19 (90) (1965) 297-301.

[34]

G.R. Mohammad-Khani, G. Ferre, J.-P. Cances, V. Meghdadi, Maximum likelihood decoding rules for STBC: generalized framework for detection and derivation of accurate upperbounds,in: Annales des telecommunications, vol. 59, Springer, 2004, pp. 1228-1249.

AI Summary AI Mindmap
PDF

60

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/