A credibility-aware swarm-federated deep learning framework in internet of vehicles

Zhe Wang , Xinhang Li , Tianhao Wu , Chen Xu , Lin Zhang

›› 2024, Vol. 10 ›› Issue (1) : 150 -157.

PDF
›› 2024, Vol. 10 ›› Issue (1) :150 -157. DOI: 10.1016/j.dcan.2022.12.018
Special issue on federated deep learning empowered internet of vehicles
research-article

A credibility-aware swarm-federated deep learning framework in internet of vehicles

Author information +
History +
PDF

Abstract

Although Federated Deep Learning (FDL) enables distributed machine learning in the Internet of Vehicles (IoV), it requires multiple clients to upload model parameters, thus still existing unavoidable communication overhead and data privacy risks. The recently proposed Swarm Learning (SL) provides a decentralized machine learning approach for unit edge computing and blockchain-based coordination. A Swarm-Federated Deep Learning framework in the IoV system (IoV-SFDL) that integrates SL into the FDL framework is proposed in this paper. The IoV-SFDL organizes vehicles to generate local SL models with adjacent vehicles based on the blockchain empowered SL, then aggregates the global FDL model among different SL groups with a credibility weights prediction algorithm. Extensive experimental results show that compared with the baseline frameworks, the proposed IoV-SFDL framework reduces the overhead of client-to-server communication by 16.72%, while the model performance improves by about 5.02% for the same training iterations.

Keywords

Swarm learning / Federated deep learning / Internet of vehicles / Privacy / Efficiency

Cite this article

Download citation ▾
Zhe Wang, Xinhang Li, Tianhao Wu, Chen Xu, Lin Zhang. A credibility-aware swarm-federated deep learning framework in internet of vehicles. , 2024, 10(1): 150-157 DOI:10.1016/j.dcan.2022.12.018

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

X. Wang, S. Garg, H. Lin, G. Kaddoum, J. Hu, M.F. Alhamid, An intelligent uav based data aggregation algorithm for 5g-enabled internet of things, Comput. Network. 185 (2021) 107628.

[2]

C. Feng, Z. Zhao, Y. Wang, T.Q.S. Quek, M. Peng, On the design of federated learning in the mobile edge computing systems, IEEE Trans. Commun. 69 (9) (2021) 5902-5916.

[3]

Z. Song, H. Sun, H.H. Yang, X. Wang, T. Quek, Reputation-based federated learning for secure wireless networks, IEEE Internet Things J. 9 (2) (2021) 1212-1226.

[4]

Z. Du, C. Wu, T. Yoshinaga, K.-L.A. Yau, Y. Ji, J. Li, Federated learning for vehicular internet of things: recent advances and open issues, IEEE Open J. Comput. Soc. 1 (2020) 45-61.

[5]

L. Li, Y. Fan, M. Tse, K.-Y. Lin, A review of applications in federated learning, Comput. Ind. Eng. (2020) 106854.

[6]

M. Hao, H. Li, G. Xu, S. Liu, H. Yang,Towards efficient and privacy-preserving federated deep learning, in: ICC 2019-2019 IEEE International Conference on Communications (ICC), IEEE, 2019, pp. 1-6.

[7]

S. Warnat-Herresthal, H. Schultze, K.L. Shastry, S. Manamohan, S. Mukherjee, V. Garg, R. Sarveswara, K. Händler, P. Pickkers, N.A. Aziz, et al., Swarm learning for decentralized and confidential clinical machine learning, Nature 594 (7862) (2021) 265-270.

[8]

Z. Chen, W. Liao, K. Hua, C. Lu, W. Yu, Towards asynchronous federated learning for heterogeneous edge-powered internet of things, Digital Commun. Networks 7 (3) (2021) 317-326.

[9]

P. Liu, C. Wang, J. Hu, T. Fu, N. Cheng, N. Zhang, X. Shen, Joint route selection and charging discharging scheduling of evs in v2g energy network, IEEE Trans. Veh. Technol. 69 (10) (2020) 10630-10641.

[10]

X. Kong, H. Gao, G. Shen, G. Duan, S.K. Das, Fedvcp: a federated-learning-based cooperative positioning scheme for social internet of vehicles, IEEE Transact. Comput. Soc. Syst. (99) (2021) 1-10.

[11]

X. Kong, K. Wang, M. Hou, X. Hao, F. Xia, A federated learning-based license plate recognition scheme for 5g-enabled internet of vehicles, IEEE Trans. Ind. Inf. 17 (12)(2021) 8523-8530.

[12]

X. Zhang, M. Peng, S. Yan, Y. Sun, Deep-reinforcement-learning-based mode selection and resource allocation for cellular v2x communications, IEEE Internet Things J. 7 (7) (2019) 6380-6391.

[13]

T. Fu, P. Liu, K. Liu, P. Li, Privacy-preserving vehicle assignment in the parking space sharing system, Wireless Commun. Mobile Comput. (2020), 8862652.

[14]

Y.-C. Wu, T.Q. Dinh, Y. Fu, C. Lin, T.Q.S. Quek, A hybrid dqn and optimization approach for strategy and resource allocation in mec networks, IEEE Trans. Wireless Commun. 20 (7) (2021) 4282-4295.

[15]

T. Wang, Z. Cao, S. Wang, J. Wang, L. Qi, A. Liu, M. Xie, X. Li, Privacy-enhanced data collection based on deep learning for internet of vehicles, IEEE Trans. Ind. Inf. 16 (10) (2019) 6663-6672.

[16]

W. Bao, C. Wu, S. Guleng, J. Zhang, K.-L.A. Yau, Y. Ji, Edge computing-based joint client selection and networking scheme for federated learning in vehicular iot, China Commun. 18 (6) (2021) 39-52.

[17]

P. Liu, Y. Ding, T. Fu, Optimal throwboxes assignment for big data multicast in vdtns, Wireless Network 28 (3) (2019) 1229-1239.

[18]

Y. Fu, H.H. Yang, K.N. Doan, C. Liu, X. Wang, T.Q.S. Quek, Effective cache-enabled wireless networks: an artificial intelligence- and recommendation-oriented framework, IEEE Veh. Technol. Mag. 16 (1) (2021) 20-28.

[19]

H. Gupta, R. Srikant, L. Ying,Finite-time performance bounds and adaptive learning rate selection for two time-scale reinforcement learning, Adv. Neural Inf. Process. Syst. 32 (2019) 4704-4713.

[20]

T. Li, A.K. Sahu, A. Talwalkar, V. Smith, Federated learning: challenges, methods, and future directions, IEEE Signal Process. Mag. 37 (3) (2020) 50-60.

[21]

B. McMahan, E. Moore, D. Ramage, S. Hampson, B.A. y Arcas, Communication-efficient learning of deep networks from decentralized data, in: Artificial Intelligence and Statistics, PMLR, 2017, pp. 1273-1282.

[22]

A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, S. Savarese, Social lstm: human trajectory prediction in crowded spaces,in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 961-971.

[23]

B. Coifman, L. Li, A critical evaluation of the next generation simulation (ngsim) vehicle trajectory dataset, Transp. Res. Part B Methodol. 105 (2017) 362-377.

AI Summary AI Mindmap
PDF

64

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/