Secure transmission in backhaul NOMA systems: A physical layer security design with untrusted user and eavesdropper

Chi-Bao Le , Dinh-Thuan Do , Miroslav Voznak

›› 2024, Vol. 10 ›› Issue (4) : 1001 -1013.

PDF
›› 2024, Vol. 10 ›› Issue (4) :1001 -1013. DOI: 10.1016/j.dcan.2022.12.005
Research article
research-article

Secure transmission in backhaul NOMA systems: A physical layer security design with untrusted user and eavesdropper

Author information +
History +
PDF

Abstract

In order to improve the Physical Layer Security (PLS) perspective, this paper aims to empower function of PLS by considering a backhaul Non-Orthogonal Multiple Access (NOMA) system in two practical situations. In the proposed schemes, the untrusted user intercepts information transmitted to the far user, or the external eavesdropper overhears confidential information sent to the far user in the context of NOMA technique. Unlike the conventional NOMA systems, this paper emphasizes the actual situations of the existence of actual illegal users and legitimate users, especially the reasonable use of relay selection architecture to improve the confidentiality performance. To evaluate the security properties of the proposed scheme, a comprehensive analysis of the Security Outage Probability (SOP) performance is first performed, and then the corresponding SOP asymptotic expressions are derived for real scenarios related to eavesdroppers and untrusted users. Numerical results are performed to verify the analysis in terms of the secure performance metric.

Keywords

Non-orthogonal multiple access (NOMA) / Wireless backhaul / Secure outage probability / Power allocation

Cite this article

Download citation ▾
Chi-Bao Le, Dinh-Thuan Do, Miroslav Voznak. Secure transmission in backhaul NOMA systems: A physical layer security design with untrusted user and eavesdropper. , 2024, 10(4): 1001-1013 DOI:10.1016/j.dcan.2022.12.005

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Li, L. Da Xu, S. Zhao, 5G Internet of Things: a survey, J. Ind. Inf. Integrat. 10 (Jun. 2018) 1-9.

[2]

G.A. Akpakwu, B.J. Silva, G.P. Hancke, A.M. Abu-Mahfouz,A survey on 5G networks for the Internet of Things: communication technologies and challenges, IEEE Access 6 (2018) 3619-3647.

[3]

D. Wang, B. Bai, W. Zhao, Z. Han, A survey of optimization approaches for wireless physical layer security, IEEE Communications Surveys & Tutorials 21 (2) (2019) 1878-1911, 2nd Quart.

[4]

J.M. Hamamreh, H.M. Furqan, H. Arslan, Classifications and applications of physical layer security techniques for confidentiality: a comprehensive survey, IEEE Communications Surveys & Tutorials 21 (2) (2018) 1773-1828, 2nd Quart.

[5]

D.-T. Do, A.-T. Le, NOMA based cognitive relaying: transceiver hardware impairments, relay selection policies and outage performance comparison, Comput. Commun. 146 (2019) 144-154.

[6]

Dinh-Thuan Do, Power switching protocol for two-way relaying network under hardware impairments, Radioengineering 24 (3) (2015) 765-771.

[7]

M.-S. Van Nguyen, Dinh-Thuan Do, S. Al-Rubaye, S. Mumtaz, A. Al-Dulaimi, O. Dobre, Exploiting impacts of antenna selection and energy harvesting for massive network connectivity, IEEE Trans. Commun. 69 (11) (2021) 7587-7602, Nov.

[8]

M.-S. Dinh-Thuan Do, V. Nguyen, M. Voznak, A. Kwasinski, J.N. de Souza, Performance analysis of clustering car-following V2X system with wireless power transfer and massive connections, IEEE Internet Things J. (99) (2021), https://doi.org/10.1109/JIOT.2021.3070744, 1-1.

[9]

D.-T. Do, A.-T. Le, Y. Liu, A. Jamalipour, User grouping and energy harvesting in UAV-NOMA system with AF/DF relaying, IEEE Trans. Veh. Technol. 70 (11) (Nov. 2021) 11855-11868.

[10]

M.-S.V. Nguyen, D.-T. Do, F. Afghah, S.M.R. Islam, A.-T. Le, Exploiting secrecy performance of uplink NOMA in cellular networks, IEEE Access 9 (2021) 95135-95154.

[11]

C.-B. Le, D.-T. Do, X. Li, Y.-F. Huang, H.-C. Chen, M. Voznak, Enabling NOMA in backscatter reconfigurable intelligent surfaces-aided systems, IEEE Access 9 (2021) 33782-33795.

[12]

S. Timotheou, I. Krikidis, Fairness for non-orthogonal multiple access in 5G systems, IEEE Signal Process. Lett. 22 (10) (2015) 1647-1651, Oct.

[13]

Z. Ding, Z. Yang, P. Fan, H.V. Poor, On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users, IEEE Signal Process. Lett. 21 (12) (2014) 1501-1505, Dec.

[14]

P. Xu, Y. Yuan, Z. Ding, X. Dai, R. Schober, On the outage performance of non-orthogonal multiple access with 1-bit feedback, IEEE Trans. Wireless Commun. 15 (10) (2016) 6716-6730, Oct.

[15]

J. Zhu, J. Wang, Y. Huang, S. He, X. You, L. Yang, On optimal power allocation for downlink non-orthogonal multiple access systems, IEEE J. Sel. Area. Commun. 35 (12) (2017) 2744-2757, Dec.

[16]

Y. Li, R. Zhao, X. Tan, Z. Nie, Secrecy Performance Analysis of Artificial Noise Aided Precoding in Full-Duplex Relay Systems, GLOBECOM-IEEE Global Communications Conference, 2017, pp. 1-6, https://doi.org/10.1109/GLOCOM.2017.8254504.

[17]

Y. Li, R. Zhao, Y. Wang, G. Pan, C. Li, Artificial noise aided precoding with imperfect CSI in full-duplex relaying secure communications, IEEE Access 6 (2018) 44107-44119, https://doi.org/10.1109/ACCESS.2018.2851598.

[18]

H. Lei, J. Zhang, K.H. Park, P. Xu, A.S. Imran, G. Pan, A. Basel, On secure NOMA systems with transmit antenna selection schemes, IEEE Access 5 (Aug. 2017) 17450-17464.

[19]

Z. Qin, Y. Liu, Z. Ding, Y. Gao, E. Maged, Physical layer security for 5G non-orthogonal multiple access in large-scale networks, in: Proc. IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, May. 2016, pp. 1-6.

[20]

H. Chen, X.F. Tao, N. Li, X.L. Li, “Secrecy Performance of the Artificial Noise Assisted Broadcast Channel with Confidential Messages and External Eavesdroppers,” IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, May 2016, pp. 1-6.

[21]

Y. Liu, Z. Qin, M. Elkashlan, Y. Gao, F.L. Hanzo, Enhancing the physical layer security of Non-Orthogonal Multiple Access in large-scale networks, IEEE Trans. Wireless Commun. 16 (3) (2017) 1656-1672, Mar.

[22]

X. Chen, Z. Zhang, C. Zhong, D.W.K. Ng, R.D. Jia, Exploiting inter-user interference for secure massive non-orthogonal multiple access, IEEE J. Sel. Area. Commun. 35 (10) (2018) 2207-2220, Apr.

[23]

W. Yu, A. Chorti, L. Musavian, H. Vincent Poor, Q. Ni, Effective secrecy rate for a downlink NOMA network, IEEE Trans. Wireless Commun. 18 (12) (2019) 5673-5690, Dec.

[24]

G. Gomez, F.J. Martin-Vega, F. Javier Lopez-Martinez, Y. Liu, M. Elkashlan, Physical layer security in uplink NOMA multi-antenna systems with randomly distributed eavesdroppers, IEEE Access 7 (2019) 70422-70435.

[25]

J.M. Hamamreh, H.M. Furqan, H. Arslan, Classifications and applications of physical layer security techniques for confidentiality: a comprehensive survey, IEEE Communications Surveys & Tutorials 21 (2) (2019) 1773-1828, 2nd Quart.

[26]

W. Shin, M. Vaezi, B. Lee, D.J. Love, J. Lee, H.V. Poor, Non-orthogonal multiple access in multi-cell networks: theory, performance and practical challenges, IEEE Commun. Mag. 55 (10) (2017) 176-183.

[27]

Y. Zhang, et al., Robust resource allocation for lightweight secure transmission in multicarrier NOMA assisted full duplex IoT networks, IEEE Internet Things J. (2022), https://doi.org/10.1109/JIOT.2021.3110974.

[28]

N. Nandan, S. Majhi, H.-C. Wu, Beamforming and power optimization for physical layer security of MIMO-NOMA based CRN over imperfect CSI, IEEE Trans. Veh. Technol. 70 (6) (June 2021)5990-6001.

[29]

Z. Zhang, C. Zhang, C. Jiang, F. Jia, J. Ge, F. Gong, Improving physical layer security for reconfigurable intelligent surface aided NOMA 6G networks, IEEE Trans. Veh. Technol. 70 (5) (May 2021)4451-4463.

[30]

B. Chen, R. Li, Q. Ning, K. Lin, C. Han, V. Leung, Security at physical layer in NOMA relaying networks with cooperative jamming, IEEE Trans. Veh. Technol. (2022), https://doi.org/10.1109/TVT.2022.3144531.

[31]

H. Liu, P.L. Yeoh, K.J. Kim, P.V. Orlik, H.V. Poor, Secrecy performance of finite-sized in-band selective relaying systems with unreliable backhaul and cooperative eavesdroppers, IEEE J. Sel. Area. Commun. 36 (7) (July 2018)1499-1516.

[32]

I.S. Gradshteyn, I.M. Ryzhik, Tables of Integrals,Series and Products, sixth ed.ed., Academic Press, New York, 2000.

[33]

S. Lee, T.Q. Duong, R. Woods, Impact of wireless backhaul unreliability and imperfect channel estimation on opportunistic NOMA, IEEE Trans. Veh. Technol. 68 (11) (Nov. 2019) 10822-10833.

[34]

T.-T. Nguyen, T.-H. Vu, T.-V. Nguyen, D.B. da Costa, C.D. Ho, Underlay cognitive NOMA-based coordinated direct and relay transmission, IEEE Wireless Commun. Lett. 10 (4) (Apr. 2021) 854-858.

[35]

L. Lv, Z. Ding, Q. Ni, J. Chen, Secure MISO-NOMA transmission with artificial noise, IEEE Trans. Veh. Technol. 67 (7) (2018) 6700-6705, Jul.

[36]

K. Cao, B. Wang, H. Ding, T. Li, J. Tian, F. Gong, Secure transmission designs for NOMA systems against internal and external eavesdropping, IEEE Trans. Inf. Forensics Secur. 15 (2020) 2930-2943.

[37]

M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York, NY, USA, 1972.

AI Summary AI Mindmap
PDF

65

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/