Energy efficiency aware dynamic rate and power adaptation in carrier sensing based WLANs under Rayleigh fading and shadowing

Md. Forkan Uddin

›› 2024, Vol. 10 ›› Issue (4) : 918 -933.

PDF
›› 2024, Vol. 10 ›› Issue (4) :918 -933. DOI: 10.1016/j.dcan.2022.10.023
Research article
research-article

Energy efficiency aware dynamic rate and power adaptation in carrier sensing based WLANs under Rayleigh fading and shadowing

Author information +
History +
PDF

Abstract

We consider the problem of energy efficiency aware dynamic adaptation of data transmission rate and transmission power of the users in carrier sensing based Wireless Local Area Networks (WLANs) in the presence of path loss, Rayleigh fading and log-normal shadowing. For a data packet transmission, we formulate an optimization problem, solve the problem, and propose a rate and transmission power adaptation scheme with a restriction methodology of data packet transmission for achieving the optimal energy efficiency. In the restriction methodology of data packet transmission, a user does not transmit a data packet if the instantaneous channel gain of the user is lower than a threshold. To evaluate the performance of the proposed scheme, we develop analytical models for computing the throughput and energy efficiency of WLANs under the proposed scheme considering a saturation traffic condition. We then validate the analytical models via simulation. We find that the proposed scheme provides better throughput and energy efficiency with acceptable throughput fairness if the restriction methodology of data packet transmission is included. By means of the analytical models and simulations, we demonstrate that the proposed scheme provides significantly higher throughput, energy efficiency and fairness index than a traditional non-adaptive scheme and an existing most relevant adaptive scheme. Throughput and energy efficiency gains obtained by the proposed scheme with respect to the existing adapting scheme are about 75% and 103%, respectively, for a fairness index of 0.8. We also study the effect of various system parameters on throughput and energy efficiency and provide various engineering insights.

Keywords

Carrier sense multiple access / Energy efficiency / Fading and shadowing / Rate and power adaptation / Throughput / Wireless local area networks

Cite this article

Download citation ▾
Md. Forkan Uddin. Energy efficiency aware dynamic rate and power adaptation in carrier sensing based WLANs under Rayleigh fading and shadowing. , 2024, 10(4): 918-933 DOI:10.1016/j.dcan.2022.10.023

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

IEEE 802.11 Working Group, Wireless LAN Medium Access Control (MAC) and Physical Layer, PHY) Specification, 1997.

[2]

J. Wu, Green wireless communications: from concept to reality, IEEE Wireless Commun. 19 (2012) 4-5.

[3]

J. Wu, S. Rangan, H. Zhang, Green Communications: Theoretical Fundamentals, Algorithms, and Applications, CRC Press, USA, 2012.

[4]

G. Miao, N. Himayat, Y. Li, A. Swami, Cross-layer optimization for energy-efficient wireless communications: a survey, Wireless Commun. Mobile Comput. 9 (4) (2009) 529-542.

[5]

J. Lorincz, A. Capone, J. Wu, Greener, energy-efficient and sustainable networks: state-of-the-art and new trends, Sensors 19 (2019) 1-29.

[6]

M.L. Huang, S. Lee, S.- Park,An adaptive energy efficient system within IEEE 802.11 standard, in:Proceedings of the 9th International Conference on Advanced Communication Technology, 2007, pp. 2085-2089.

[7]

K. Yang, S. Martin, C. Xing, J. Wu, R. Fan, Energy-efficient power control for device-to-device communications, IEEE J. Sel. Area. Commun. 34 (2016) 3208-3220.

[8]

B.H. Jung, H. Jin, D.K. Sung, Adaptive transmission power control and rate selection scheme for maximizing energy efficiency of IEEE 802.11 stations, in: Proceedings of the IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications-, PIMRC), 2012, pp. 266-271.

[9]

I. Ucar, C. Donato, P. Serrano, A. Garcia-Saavedra, A. Azcorra, A. Banchs, On the energy efficiency of rate and transmission power control in 802.11, Comput. Commun. 117 (2018) 164-174.

[10]

S.K. Saha, P. Deshpande, P.P. Inamdar, R.K. Sheshadri, D. Koutsonikolas, Power-throughput tradeoffs of 802.11n/ac in smartphones, in: Proceedings of the IEEE Conference on Computer Communications, INFOCOM, 2015, pp. 100-108.

[11]

D.S. Chan, T. Berger, R. Bridgelall, Energy efficiency of CSMA protocols for wireless packet switched networks, in: Proceedings of the IEEE Wireless Communications and Networking Conference, IEEE, 2004, pp. 447-452.

[12]

J. Zhao, Z. Guo, W. Zhu,Power efficiency in IEEE 802.11a WLAN with cross-layer adaptation, in:Proceedings of the IEEE International Conference on Communications, 2003, pp. 2030-2034.

[13]

S. Tang, H. Yomo, A. Hasegawa, T. Shibata, M. Ohashi, Joint transmit power control and rate adaptation for wireless LANs, Wireless Pers, Commun. Now. 74 (2014) 469-486.

[14]

S. Kim, J. Yi, Y. Son, S. Yoo, S. Choi, A.C.K. Quiet, ACK transmit power control in IEEE 802.11 WLANs, in: Proceedings of the IEEE Conference on Computer Communications, INFOCOM, 2017, pp. 1-9.

[15]

D. Qiao, S. Choi, A. Jain, K.G. Shin,Adaptive transmit power control in IEEE 802.11a wireless LANs, in:Proceedings of the 57th IEEE Semiannual Vehicular Technology Conference, 2003, pp. 433-437.

[16]

D. Qiao, S. Choi, A. Jain, K.G. Shin,MiSer: an optimal low-energy transmission strategy for IEEE 802.11a/h, in: Proceedings of the ACM MobiCom, 2003, pp. 161-175.

[17]

D. Qiao, S. Choi, K.G. Shin,Interference analysis and transmit power control in IEEE 802.11a/h wireless LANs, IEEE/ACM Trans. Netw. 15 (2007) 1007-1020.

[18]

T.Y. Arif, D. Rinaldi, R. Adriman,Energy-aware rate adaptation algorithm for high throughput IEEE 802.11n WLANs, in: Proceedings of the 3rd International Seminar on Sensors, Instrumentation, Measurement and Metrology (ISSIMM), 2018, pp. 48-53.

[19]

V. Sridhara, S. Clara, S.M. Das, A. Aggarwal,Method of Selecting Bit Rate and Transmit Power for Energy-Efficient Transmission, United States Patent US 2011/ 0176468 A1, 2011.

[20]

P. Chevillat, J. Jelitto, H. Truong,Dynamic data rate and transmit power adjustment in IEEE 802.11 wireless LANs, Int. J. Wireless Inf. Network 12 (2005) 123-145.

[21]

H. Munanzar, T.Y. Arif, Syahrial, Aarf-Ht, Adaptive auto rate fallback for high-throughput IEEE 802.11n WLANs, Int. J. Commun. Network. Inf. Secur. 10 (2018) 170-179.

[22]

T.Y. Arif, R. Munadi, Fardian,evaluation of the minstrel-HT rate adaptation algorithm in IEEE 802.11n WLANs, Int. J. Simulat. Syst. Sci. Technol. 18 (2017) 11. 1-11.7.

[23]

C.Y. Li, S. Lu, C. Peng, X. Bang,An energy efficiency perspective on rate adaptation for 802.11n NIC, IEEE Trans. Mobile Comput. 15 (2016) 1333-1347.

[24]

J.W. Mark, W. Zhuang, Wireless Communications and Networking, Prentice Hall, 2003.

[25]

A. Iyer, C. Rosenberg, A. Karnik, What is the right model for wireless channel interference? IEEE/ACM Trans. Netw. 8 (2009) 2662-2671.

[26]

G. Bianchi,Performance analysis of the IEEE 802.11 distributed coordination function, IEEE J. Sel. Area. Commun. 18 (2000) 535-547.

[27]

J.H. Kim, J.K. Lee, Capture effects of wireless CSMA/CA protocols in Rayleigh and shadow fading channels, IEEE Trans. Veh. Technol. 48 (1999) 1277-1286.

[28]

Z. Hadzi-Velkov, B. Spasenovski, Capture effect in IEEE 802.11 basic service area under influence of Rayleigh fading and near/far effect, in: Proceedings of the 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, IEEE, 2002, pp. 172-176.

[29]

X. Li, Q. Zeng,Performance Analysis of the IEEE 802.11 MAC Protocols over a WLAN with Capture Effect, vol. 1, Information and Media Technologies, 2006, pp. 679-685.

[30]

M.H. Manshaei, G.R. Cantieni, C. Barakat, T. Turletti,Performance analysis of the IEEE 802.11 MAC and physical layer protocol, in:Proceedings of the 6th IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks, 2005, pp. 88-97.

[31]

A. Zanella, F.D. Pellegrini,Mathematical analysis of IEEE 802.11 energy efficiency, in: Proceedings of the WPMC04, 2004.

[32]

P. Serrano, A. Banchs, L. Vollero, M. Hollick, Throughput and energy efficiency in IEEE 802.11 WLANs: friends or foes?, in: Proceedings of the Springer QSHINE, 2012.

[33]

I. Pefkianakis, Y. Hu, S.H.Y. Wong, H. Yang, S. Lu,MIMO rate adaptation in 802.11n wireless networks, in:Proceedings of the 16th Annu. Int. Conf. Mobile Comput,. Netw., 2010, pp. 257-268.

[34]

A. Garcia-Saavedra, P. Serrano, A. Banchs, M. Hollick,Balancing energy efficiency and throughput fairness in IEEE 802.11 WLANs, Pervasive Mob. Comput. 8 (2012) 631-645.

[35]

E. Davri, E. Kafetzakis, K. Kontovasilis, C. Skianis, An accurate model for energy efficiency in IEEE 802.11 WLANs, in: Proceedings of the 2014 IEEE 19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks, CAMAD, 2014, pp. 385-389.

[36]

P. Serrano, M. Hollick, A. Banchs,On the trade-off between throughput maximization and energy consumption minimization in IEEE 802.11 WLANs, J. Commun. Network. 12 (2010) 150-157.

[37]

R. Bruno, M. Conti, E. Gregori, IEEE 802.11 optimal performances:RTS/CTS mechanism vs. basic access, in: Proceedings of the 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, IEEE, 2002, pp. 1747-1751.

[38]

K. Duffy, D. Malone, S. Leith,Modeling the 802.11 distributed coordination function in non saturated conditions, IEEE Commun. Lett. 9 (2005) 715-717.

[39]

G.R. Cantieni, Q. Ni, C. Barakat, T. Turletti, Performance analysis under finite load and improvements for multirate 802.11, Comput. Commun. 28 (2005) 1095-1109.

[40]

H. Zhang, X. Zhang, G. Chen,Performance analysis of IEEE802.11 DCF in non-saturated conditions, in:Proceedings of the 2011 International Conference on Business Management and Electronic Information, 2011, pp. 495-498.

[41]

Z. Qin, J. Xiao, H. Xie, A novel model for non-saturated performance analysis of IEEE802.11 DCF, in: Proceedings of the 2012 2nd International Conference on Consumer Electronics, Communications and Networks, CECNet, 2012, pp. 1552-1556.

[42]

T. Kim, J.T. Lim,Throughput analysis considering coupling effect in IEEE 802.11 networks with hidden stations, IEEE Commun. Lett. 13 (2009) 175-177.

[43]

X. Li, Y. Narita, Y. Gotoh, S. Shioda,Performance Analysis of IEEE 802.11 DCF Based on a Macroscopic State Description, IEICE Trans. Commun., 2018, pp. 1923-1932.

[44]

F. Daneshgaran, M. Laddomada, F. Mesiti, M. Mondin, M. Zanolo,Saturation throughput analysis of IEEE 802.11 in the presence of non ideal transmission channel and capture effects, IEEE Trans. Commun. 56 (2008) 1178-1188.

[45]

M.F. Uddin, Throughput analysis of a CSMA based WLAN with successive interference cancellation under Rayleigh fading and shadowing, Springer Journal Wireless Networks 22 (2016) 1285-1298.

[46]

M.E. Bayrakdar, S. Atmaca, A. Karahan, A slotted ALOHA-Based random access cognitive radio network with capture effect in Rayleigh fading channels, in: Proceedings of the International Conference on Electronics, Computer and Computation (ICECCO), 2013, pp. 72-75.

[47]

M. Cicioglu, M.E. Bayrakdar, A. Çalhan, Performance analysis of a new MAC protocol for wireless cognitive radio networks, Wireless Pers. Commun. 108 (2019) 67-86.

[48]

B. Khan, R.A. Rehman, B.-S. Kim, A joint strategy for fair and efficient energy usage in WLANs in the presence of capture effect, Electronics 8 (4) (2019) 386.

[49]

M.E. Bayrakdar, Energy-efficient technique for monitoring of agricultural areas with terrestrial wireless sensor networks, J. Circ. Syst. Comput. 29 (9) (2020) 2050141. 1-2050141.17.

[50]

IEEE standard for information technology-local and metropolitan area networks-specific requirements-Part 11: wireless LAN medium access control (MAC)and physical layer (PHY) specifications amendment 5: enhancements for higher throughput, in: IEEE Std 802.11n-2009 (Amendment to IEEE Std 802.11-2007 as Amended by IEEE Std 802.11k-2008, IEEE Std 802.11r-2008, IEEE Std 802.11y-2008, and IEEE Std 802.11w-2009, 2009, 1-565.

[51]

T. Paul, T. Ogunfunmi,Wireless LAN comes of age: understanding the IEEE 802.11n amendment, IEEE Circ. Syst. Mag. 8 (2008) 28-54.

[52]

G.D. Durgin, T.S. Rappaport, H. Xu,Measurements and models for radio path loss and penetration loss in and around homes and trees at 5.85 GHz, IEEE Trans. Commun. 46 (1988) 1484-1496.

[53]

S. Chiaravalloti, F. Idzikowski, Ëukasz Budzisz, Power Consumption of WLAN Network Elements, Technical Report, 2011.

[54]

D. Skordoulis, Q. Ni, H. Chen, A.P. Stephens, C. Liu, A. Jamalipour, IEEE 802.11n MAC frame aggregation mechanisms for next-generation high-throughput WLANs, IEEE Wireless Commun. 15 (2008) 40-47.

[55]

S.S. Rao, Applied Numerical Methods for Engineers and Scientists, Prentice Hall, 2002, pp. 588-605.

[56]

C. Wang, H.K. Lo, S.H. Fang, Fairness Analysis of Throughput and Delay in WLAN Environments with Channel Diversities, EURASIP Joumal on Wireless Communications and Networking, 2011.

[57]

S.M. Ross,Introduction to Probability Models, tenth ed., 2010.

[58]

H. Arslan, G.E. Bottomley, Channel Estimation in Narrowband Wireless Communication Systems, Wireless Communication and Mobile Computing, Wiley, 2001 DOI: 10.1002/wcm.14.

[59]

I. Lu, K.J. Tsai, Channel estimation in a proposed IEEE802.11n OFDM MIMO WLAN system, in: Proceedings of the IEEE Conferences Sarnoff Symposium, IEEE, 2007, pp. 1-5.

[60]

J.-J. van de Beek, O. Edfors, M. Sandell, S.K. Wilson, P.O. Borjesson, On channel estimation in OFDM systems, in: Proceedings of the IEEE Conference on Vehicular Technology, VTC, 1995.

[61]

J. Ketonen, M. Juntti, J. Ylioinas, J.R. Cavallaro, Implementation of LS, MMSE and SAGE channel estimators for mobile MIMO-OFDM, in: Proceedings of the 11th Asilomar Conference on Circuits, Systems and Computers, 2012.

[62]

M.H. Holmes, Introduction to Scientific Computing and Data Analysis, Springer, 2016.

AI Summary AI Mindmap
PDF

72

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/