PDF
Abstract
Wireless Sensor Network (WSN) is a cornerstone of Internet of Things (IoT) and has rich application scenarios. In this work, we consider a heterogeneous WSN whose sensor nodes have a diversity in their Residual Energy (RE). In this work, to protect the sensor nodes with low RE, we investigate dynamic working modes for sensor nodes which are determined by their RE and an introduced energy threshold. Besides, we employ an Unmanned Aerial Vehicle (UAV) to collect the stored data from the heterogeneous WSN. We aim to jointly optimize the cluster head selection, energy threshold and sensor nodes’ working mode to minimize the weighted sum of energy consumption from the WSN and UAV, subject to the data collection rate constraint. To this end, we propose an efficient search method to search for an optimal energy threshold, and develop a penalty-based successive convex approximation algorithm to select the cluster heads. Then we present a low-complexity iterative approach to solve the joint optimization problem and discuss the implementation procedure. Numerical results justify that our proposed approach is able to reduce the energy consumption of the sensor nodes with low RE significantly and also saves energy for the whole WSN.
Keywords
Unmanned aerial vehicle
/
Wireless sensor networks
/
Cluster heads
/
Dynamic working modes
Cite this article
Download citation ▾
Jie Chen, Jianhua Tang.
UAV-assisted data collection for wireless sensor networks with dynamic working modes.
, 2024, 10(3): 805-812 DOI:10.1016/j.dcan.2022.10.017
| [1] |
I. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, A survey on sensor networks, IEEE Commun. Mag. 40 (8) (2002) 102-114.
|
| [2] |
W. Qin, S. Chen, M. Peng, Recent advances in Industrial Internet: insights and challenges, Digital Commun. Netw. 6 (1) (2020) 1-13.
|
| [3] |
M.R. Palattella, M. Dohler, A. Grieco, G. Rizzo, J. Torsner, T. Engel, L. Ladid, Internet of things in the 5G era: enablers, architecture, and business models, IEEE J. Sel. Area. Commun. 34 (3) (2016) 510-527.
|
| [4] |
O. Georgiou, U. Raza, Low power wide area network analysis: can LoRa scale? IEEE Wireless Commun. Lett. 6 (2) (2017) 162-165.
|
| [5] |
W. Lu, Y. Mo, Y. Feng, Y. Gao, N. Zhao, Y. Wu, A. Nallanathan, Secure transmission for multi-UAV-assisted mobile edge computing based on reinforcement learning, IEEE Trans. Network Sci. Eng. (2022) 1-12.
|
| [6] |
Y. Zeng, J. Tang, MEC-assisted real-time data acquisition and processing for UAV with general missions, IEEE Trans. Veh. Technol. (2022) 1-15.
|
| [7] |
W. Lu, Y. Ding, Y. Gao, Y. Chen, N. Zhao, Z. Ding, A. Nallanathan, Secure NOMA-based UAV-MEC network towards a flying eavesdropper, IEEE Trans. Commun. 70 (5) (2022) 3364-3376.
|
| [8] |
L. Xiao, X. Lu, D. Xu, Y. Tang, L. Wang, W. Zhuang, UAV relay in VANETs against smart jamming with reinforcement learning, IEEE Trans. Veh. Technol. 67 (5) (2018) 4087-4097.
|
| [9] |
Y. Zeng, R. Zhang, T.J. Lim, Wireless communications with unmanned aerial vehicles: opportunities and challenges, IEEE Commun. Mag. 54 (5) (2016) 36-42.
|
| [10] |
C. Zhan, Y. Zeng, R. Zhang, Energy-efficient data collection in UAV enabled wireless sensor network, IEEE Wireless Commun. Lett. 7 (3) (2018) 328-331.
|
| [11] |
J. Gong, T.-H. Chang, C. Shen, X. Chen, Flight time minimization of UAV for data collection over wireless sensor networks, IEEE J. Sel. Area. Commun. 36 (9) (2018) 1942-1954.
|
| [12] |
C. Zhan, Y. Zeng, Aerial-ground cost tradeoff for multi-UAV-enabled data collection in wireless sensor networks, IEEE Trans. Commun. 68 (3) (2020) 1937-1950.
|
| [13] |
M. Samir, S. Sharafeddine, C.M. Assi, T.M. Nguyen, A. Ghrayeb, UAV trajectory planning for data collection from time-constrained IoT devices, IEEE Trans. Wireless Commun. 19 (1) (2020) 34-46.
|
| [14] |
X. Mu, Y. Liu, L. Guo, J. Lin, Z. Ding, Energy-constrained UAV data collection systems: NOMA and OMA, IEEE Trans. Veh. Technol. 70 (7) (2021) 6898-6912.
|
| [15] |
Z. Wang, R. Liu, Q. Liu, J.S. Thompson, M. Kadoch, Energy-efficient data collection and device positioning in UAV-assisted IoT, IEEE Internet Things J. 7 (2) (2020) 1122-1139.
|
| [16] |
Y. Yu, J. Tang, J. Huang, X. Zhang, D.K.C. So, K.-K. Wong, Multi-objective optimization for UAV-assisted wireless powered IoT networks based on extended DDPG algorithm, IEEE Trans. Commun. 69 (9) (2021) 6361-6374.
|
| [17] |
D. Ebrahimi, S. Sharafeddine, P.-H. Ho, C. Assi, UAV-aided projection-based compressive data gathering in wireless sensor networks, IEEE Internet Things J. 6 (2) (2019) 1893-1905.
|
| [18] |
O. Ghdiri, W. Jaafar, S. Alfattani, J.B. Abderrazak, H. Yanikomeroglu, Offline and online UAV-enabled data collection in time-constrained IoT networks, IEEE Trans. Green Commun. Networking 5 (4) (2021) 1918-1933.
|
| [19] |
T. Wu, J. Liu, J. Liu, Z. Huang, H. Wu, C. Zhang, B. Bai, G. Zhang, A novel AI-based framework for AoI-optimal trajectory planning in UAV-assisted wireless sensor networks, IEEE Trans. Wireless Commun. 21 (4) (2022) 2462-2475.
|
| [20] |
J. Chen, J. Tang, UAV-assisted data collection for dynamic and heterogeneous wireless sensor networks, IEEE Wireless Commun. Lett. 11 (6) (2022) 1288-1292.
|
| [21] |
C. Luo, F. Wu, J. Sun, C.W. Chen, Compressive data gathering for large-scale wireless sensor networks, in: Proceedings of the 15th Annual ACM International Conference on Mobile Computing and Networking, ACM, 2009, pp. 145-156.
|
| [22] |
A. Gersho, R. Gray, Vector Quantization and Signal Compression, Springer, New York, 1991.
|
| [23] |
W. Heinzelman, A. Chandrakasan, H. Balakrishnan, An application-specific protocol architecture for wireless microsensor networks, IEEE Trans. Wireless Commun. 1 (4) (2002) 660-670.
|
| [24] |
A. Goldsmith, Wireless Communications, Cambridge University Press, Cambridge, 2005.
|
| [25] |
3GPP, Enhanced LTE Support for Aerial Vehicles, Technical Specification (TS) 36.777, 3rd Generation Partnership Project ( 3GPP), Jul. 2017.
|
| [26] |
Y. Zeng, X. Xu, R. Zhang, Trajectory design for completion time minimization in UAV-enabled multicasting, IEEE Trans. Wireless Commun. 17 (4) (2018) 2233-2246.
|
| [27] |
Y. Zeng, J. Xu, R. Zhang, Energy minimization for wireless communication with rotary-wing UAV, IEEE Trans. Wireless Commun. 18 (4) (2019) 2329-2345.
|
| [28] |
D.P. Bertsekas, Nonlinear Programming, Athena Scientific, Massachusetts, 2016.
|
| [29] |
J. Zhang, Z. Xiao, Y. Tan, X. He, Hybrid particle swarm optimizer with advance and retreat strategy and clonal mechanism for global numerical optimization, in: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, IEEE, 2008, pp. 2059-2066.
|
| [30] |
Q.-D. Vu, K.-G. Nguyen, M. Juntti, Max-min fairness for multicast multigroup multicell transmission under backhaul constraints, in: Proceedings of the 2016 IEEE Global Communications Conference, IEEE, 2016, pp. 1-6.
|
| [31] |
X. Zhou, S. Yan, F. Shu, R. Chen, J. Li, UAV-enabled covert wireless data collection, IEEE J. Sel. Area. Commun. 39 (11) (2021) 3348-3362.
|
| [32] |
R. Horst, N.V. Thoai, DC programming: overview, J. Optim. Theor. Appl. 103 (1)(1999) 1-43.
|
| [33] |
T. Lipp, S. Boyd, Variations and extension of the convex-concave procedure, Optim. Eng. 17 (2) (2016) 263-287.
|
| [34] |
M. Grant, S. Boyd, CVX: Matlab Software for Disciplined Convex Programming, version 2.1, http://cvxr.com/cvx (March 2014).
|
| [35] |
K.-Y. Wang, A.M.-C. So, T.-H. Chang, W.-K. Ma, C.-Y. Chi, Outage constrained robust transmit optimization for multiuser MISO downlinks: tractable approximations by conic optimization, IEEE Trans. Signal Process. 62 (21) (2014) 5690-5705.
|
| [36] |
Y. Xu, T. Zhang, D. Yang, Y. Liu, M. Tao, Joint resource and trajectory optimization for security in UAV-assisted MEC systems, IEEE Trans. Commun. 69 (1) (2021) 573-588.
|
| [37] |
J. Li, H. Zhao, H. Wang, F. Gu, J. Wei, H. Yin, B. Ren, Joint optimization on trajectory altitude, velocity, and link scheduling for minimum mission time in UAV-aided data collection, IEEE Internet Things J. 7 (2) (2020) 1464-1475.
|
| [38] |
Y. Bengio, A. Lodi, A. Prouvost, Machine learning for combinatorial optimization: a methodological tour d’horizon, Eur. J. Oper. Res. 290 (2) (2021) 405-421.
|