Artificial intelligence in physiological characteristics recognition for internet of things authentication

Zhimin Zhang , Huansheng Ning , Fadi Farha , Jianguo Ding , Kim-Kwang Raymond Choo

›› 2024, Vol. 10 ›› Issue (3) : 740 -755.

PDF
›› 2024, Vol. 10 ›› Issue (3) :740 -755. DOI: 10.1016/j.dcan.2022.10.006
Research article
research-article

Artificial intelligence in physiological characteristics recognition for internet of things authentication

Author information +
History +
PDF

Abstract

Effective user authentication is key to ensuring equipment security, data privacy, and personalized services in Internet of Things (IoT) systems. However, conventional mode-based authentication methods(e.g., passwords and smart cards) may be vulnerable to a broad range of attacks (e.g., eavesdropping and side-channel attacks). Hence, there have been attempts to design biometric-based authentication solutions, which rely on physiological and behavioral characteristics. Behavioral characteristics need continuous monitoring and specific environmental settings, which can be challenging to implement in practice. However, we can also leverage Artificial Intelligence (AI) in the extraction and classification of physiological characteristics from IoT devices processing to facilitate authentication. Thus, we review the literature on the use of AI in physiological characteristics recognition published after 2015. We use the three-layer architecture of the IoT (i.e., sensing layer, feature layer, and algorithm layer) to guide the discussion of existing approaches and their limitations. We also identify a number of future research opportunities, which will hopefully guide the design of next generation solutions.

Keywords

Physiological characteristics recognition / Artificial intelligence / Internet of things / Biological-driven authentication

Cite this article

Download citation ▾
Zhimin Zhang, Huansheng Ning, Fadi Farha, Jianguo Ding, Kim-Kwang Raymond Choo. Artificial intelligence in physiological characteristics recognition for internet of things authentication. , 2024, 10(3): 740-755 DOI:10.1016/j.dcan.2022.10.006

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. Yan, Personalized recommendation method for e-commerce platform based on data mining technology, in: 2017 International Conference on Smart Grid and Electrical Automation (ICSGEA), IEEE, 2017, pp. 514-517.

[2]

P. Li, G. Zhang, L. Chao, Z. Xie, Personalized recommendation system for offline shopping, in: 2018 International Conference on Audio, Language and Image Processing (ICALIP), IEEE, 2018, pp. 445-449.

[3]

J. Zhang, Y. Wang, Z. Yuan, Q. Jin, Personalized real-time movie recommendation system: practical prototype and evaluation, Tsinghua Sci. Technol. 25 (2) (2020) 180-191.

[4]

Q. Zhang, J. Zhao, Online configuration of personalized solutions based on extension reasoning, in: 2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE), IOP Publishing, 2020, pp. 51-56.

[5]

M. Shahid, M.A. Qadeer, Novel scheme for securing passwords, in: 2009 3rd IEEE International Conference on Digital Ecosystems and Technologies, IEEE, 2009, pp. 223-227.

[6]

M.M. Taha, T.A. Alhaj, A.E. Moktar, A.H. Salim, S.M. Abdullah, On password strength measurements: password entropy and password quality, in: 2013 INTERNATIONAL CONFERENCE ON COMPUTING, ELECTRICAL AND ELECTRONIC ENGINEERING (ICCEEE), IEEE, 2013, pp. 497-501.

[7]

Z. Wu, D. Chiang, T. Lin, Y. Chung, T. Chen, A reliable dynamic user-remote password authentication scheme over insecure network, in: 2012 26th International Conference on Advanced Information Networking and Applications Workshops, IEEE, 2012, pp. 25-28.

[8]

L. Zhu, L. Zhu, Electronic signature based on digital signature and digital watermarking, in: 2012 5th International Congress on Image and Signal Processing, IEEE, 2012, pp. 1644-1647.

[9]

M. Noureddine, R. Bashroush,A provisioning model towards oauth 2.0 performance optimization, in: 2011 IEEE 10th International Conference on Cybernetic Intelligent Systems (CIS), IEEE, 2011, pp. 76-80.

[10]

S. Oh, Y. Kim, Interoperable oauth 2.0 framework, in: 2019 International Conference on Platform Technology and Service (PlatCon), Institution of Creative Research Professionals (ICRP), 2019, pp. 1-5.

[11]

Chin-Seng Chua, Feng Han, Yeong-Khing Ho,3d human face recognition using point signature, in:Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No.PR00580), IEEE, 2000, pp. 233-238.

[12]

Z. Yong, Z. Aixin, L. Songnian, Dct fingerprint classifier based group fingerprint, in: 2014 International Conference on Audio, Language and Image Processing, IEEE, 2014, pp. 292-295.

[13]

Z. Sun, H. Zhang, T. Tan, J. Wang, Iris image classification based on hierarchical visual codebook, IEEE Trans. Pattern Anal. Mach. Intell. 36 (6) (2014) 1120-1133.

[14]

M. Umair Bin Altaf, T. Butko, B. Juang, Acoustic gaits: gait analysis with footstep sounds, IEEE Trans. Biomed. Eng. 62 (8) (2015) 2001-2011.

[15]

H. Ma, W. Liao, Human gait modeling and analysis using a semi-markov process with ground reaction forces, IEEE Trans. Neural Syst. Rehabil. Eng. 25 (6) (2017) 597-607.

[16]

M. El-Abed, M. Dafer, R.E. Khayat, Rhu keystroke: a mobile-based benchmark for keystroke dynamics systems, in: 2014 International Carnahan Conference on Security Technology (ICCST), IEEE, 2014, pp. 1-4.

[17]

A. Serwadda, Z. Wang, P. Koch, S. Govindarajan, R. Pokala, A. Goodkind, D. Brizan, A. Rosenberg, V.V. Phoha, K. Balagani, Scan-based evaluation of continuous keystroke authentication systems, IT Prof 15 (4) (2013) 20-23.

[18]

D. Hosseinzadeh, S. Krishnan, Gaussian mixture modeling of keystroke patterns for biometric applications, IEEE Trans. Syst. Man Cybern. C Appl. Rev. 38 (6) (2008) 816-826.

[19]

M.M. Mubarak al Balushi, R.V. Lavanya, S. Koottala, A.V. Singh, Wavelet based human voice identification system, in: 2017 International Conference on Infocom Technologies and Unmanned Systems (Trends and Future Directions) (ICTUS), IEEE, 2017, pp. 188-192.

[20]

D. Połap, M. Woźniak, Voice recognition by neuro-heuristic method, Tsinghua Sci. Technol. 24 (1) (2019) 9-17.

[21]

H. Kumar, S. Kumar, R. Joseph, D. Kumar, S.K. Shrinarayan Singh, P. Kumar, H. Kumar, Rainbow table to crack password using md5 hashing algorithm, in: 2013 IEEE Conference on Information Communication Technologies, IEEE, 2013, pp. 433-439.

[22]

A.R. Kazmi, M. Afzal, M.F. Amjad, A. Rashdi, Combining algebraic and side channel attacks on stream ciphers, in: 2017 International Conference on Communication Technologies (ComTech), IEEE, 2017, pp. 138-142.

[23]

Y. Makino, V. Klyuev, Evaluation of web vulnerability scanners, in: 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), IEEE, 2015, pp. 399-402.

[24]

K. Vijayalakshmi, A.A. Leema, Extenuating web vulnerability with a detection and protection mechanism for a secure web access, in: 2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN), IEEE, 2017, pp. 1-4.

[25]

M. Wazid, A. Katal, R.H. Goudar, D.P. Singh, A. Tyagi, R. Sharma, P. Bhakuni, A framework for detection and prevention of novel keylogger spyware attacks, in: 2013 7th International Conference on Intelligent Systems and Control (ISCO), IEEE, 2013, pp. 433-438.

[26]

C.S. Bindu, Click based graphical captcha to thwart spyware attack, in: 2015 IEEE International Advance Computing Conference (IACC), IEEE, 2015, pp. 324-328.

[27]

W. Xu, Y. Shen, Y. Zhang, N. Bergmann, W. Hu, Gait-watch: a context-aware authentication system for smart watch based on gait recognition,in:Proceedings of the Second International Conference on Internet-Of-Things Design and Implementation, Association for Computing Machinery, 2017, pp. 59-70.

[28]

Y. Shen, C. Luo, W. Xu, W. Hu, Poster: an online approach for gait recognition on smart glasses,in:Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems, Association for Computing Machinery, 2015, pp. 389-390.

[29]

H. Sajid, S.S. Cheung, Vsig: hand-gestured signature recognition and authentication with wearable camera, in: 2015 IEEE International Workshop on Information Forensics and Security (WIFS), IEEE, 2015, pp. 1-6.

[30]

V. Verlinden, A. Maksimovic, S. Mirza, M. Ikram, J. Kiefte-de Jong, A. Hofman, O. Franco, H. Tiemeier, J. Van Der Geest, The associations of alcohol, coffee and tobacco consumption with gait in a community-dwelling population, Eur. J. Clin. Nutr. 70 (1) (2016) 116-122.

[31]

Tomasz Dziedzic, The influence of lying body position on handwriting, J. Forensic Sci. 61 (2016) S177-S183.

[32]

S. Zhao, J. Zhang,A study on the influence of writer's emotional states on the characteristics of handwriting, J. Crim. Investig. Police Univ. China 148 (2019) 1-7.

[33]

S. Khokhar, A.A.B.M. Zin, A.S.B. Mokhtar, M. Pesaran, A comprehensive overview on signal processing and artificial intelligence techniques applications in classification of power quality disturbances, Renew. Sustain. Energy Rev. 51 (2015) 1650-1663.

[34]

M. Wasimuddin, K. Elleithy, A.-S. Abuzneid, M. Faezipour, O. Abuzaghleh, Stages-based ecg signal analysis from traditional signal processing to machine learning approaches: a survey, IEEE Access 8 (2020) 177782-177803.

[35]

D.I. Patrício, R. Rieder, Computer vision and artificial intelligence in precision agriculture for grain crops: a systematic review, Comput. Electron. Agric. 153 (2018) 69-81.

[36]

S. Shukla, A. Lakhmani, A.K. Agarwal, Approaches of artificial intelligence in biomedical image processing: a leading tool between computer vision & biological vision, in: 2016 International Conference on Advances in Computing, Communication, & Automation (ICACCA)(Spring), IEEE, 2016, pp. 1-6.

[37]

A. Bhargava, A. Bansal, Novel coronavirus (covid-19) diagnosis using computer vision and artificial intelligence techniques: a review, Multimed. Tool. Appl. (2021) 1-16.

[38]

J. Janai, F. Güney, A. Behl, A. Geiger, et al. Computer vision for autonomous vehicles: problems, datasets and state of the art, Found. Trends® Comput., Graph. Vis. 12 (1-3) (2020) 1-308.

[39]

K. Shaheed, A. Mao, I. Qureshi, M. Kumar, Q. Abbas, I. Ullah, X. Zhang, A systematic review on physiological-based biometric recognition systems: current and future trends, Arch. Comput. Methods Eng. (2021) 1-44.

[40]

H. Ning, Z. Zhang, M. Daneshmand, Phinet of things: things connected by physical space from the natural view, IEEE Internet Things J. 8 (11) (2020) 8680-8692.

[41]

Y. Liang, S. Samtani, B. Guo, Z. Yu, Behavioral biometrics for continuous authentication in the internet-of-things era: an artificial intelligence perspective, IEEE Internet Things J. 7 (9) (2020) 9128-9143.

[42]

L. Feng, J. Wang, C. Ding, Y. Chen, T. Xie, Research on the feedback system of face recognition based on artificial intelligence applied to intelligent chip, in: Journal of Physics: Conference Series, IOP Publishing, 2021 032162.

[43]

I.M. Alsaadi, Physiological biometric authentication systems advantages, disadvantages and future development: a review, International Journal of Scientific & Technology Research 4 (12) (2015) 285-289.

[44]

W. Meng, D.S. Wong, S. Furnell, J. Zhou, Surveying the development of biometric user authentication on mobile phones, IEEE Commun. Surv. Tutor. 17 (3) (2014) 1268-1293.

[45]

P. Padma, S. Srinivasan, A survey on biometric based authentication in cloud computing, in: 2016 International Conference on Inventive Computation Technologies (ICICT), IEEE, 2016, pp. 1-5.

[46]

J. Blasco, T.M. Chen, J. Tapiador, P. Peris-Lopez, A survey of wearable biometric recognition systems, ACM Comput. Surv. 49 (3) (2016) 1-35.

[47]

Z. Rui, Z. Yan, A survey on biometric authentication: toward secure and privacy-preserving identification, IEEE Access 7 (2018) 5994-6009.

[48]

S. Dargan, M. Kumar, A comprehensive survey on the biometric recognition systems based on physiological and behavioral modalities, Expert Syst. Appl. 143 (2020) 113114.

[49]

S. Liu, W. Shao, T. Li, W. Xu, L. Song, Recent Advances in Biometrics-Based User Authentication for Wearable Devices: A Contemporary Survey, Digit, Signal Prog., 2021 103120.

[50]

About face id advanced technology, https://support.apple.com/en-us/HT208108, 2020 (accessed 18 October 2020).

[51]

J. Galbally, R. Haraksim, L. Beslay, A study of age and ageing in fingerprint biometrics, IEEE Trans. Inf. Forensics Secur. 14 (5) (2019) 1351-1365.

[52]

P.J. Phillips, A. Martin, C.L. Wilson, M. Przybocki, An introduction evaluating biometric systems, Computer 33 (2) (2000) 56-63.

[53]

X. Tao, X. Chen, X. Yang, J. Tian, Fingerprint recognition with identical twin fingerprints, PLoS One 7 (4) (2012) e35704.

[54]

G.N. Cerme, M. Karakaya, 3d iris structure impact on iris recognition, in: 2015 23nd Signal Processing and Communications Applications Conference (SIU), IEEE, 2015, pp. 907-910.

[55]

P. Tower, The fundus oculi in monozygotic twins: report of six pairs of identical twins, AMA archives of ophthalmology 54 (2) (1955) 225-239.

[56]

Z. Waheed, A. Waheed, M.U. Akram, A robust non-vascular retina recognition system using structural features of retinal image, in: 2016 13th International Bhurban Conference on Applied Sciences and Technology (IBCAST), IEEE, 2016, pp. 101-105.

[57]

D.P. Gaikwad, S.P. Narote, Multi-modal biometric system using palm print and palm vein features, in: 2013 Annual IEEE India Conference (INDICON), IEEE, 2013, pp. 1-5.

[58]

Amazon's hand-scanning orville tech hopes to help us wave goodbye to credit cards, https://news.yahoo.com/amazon-hand-scanning-orville-tech-140037636.html, 2020 (accessed 21 October 2020).

[59]

Y. Takashi, A. Satoshi, O. Tetsuji, Human finger vein images are diverse and its patterns are useful for personal identification, MHF Prepr. Ser 12 (2007) 1-7.

[60]

S.M. Ra fi, N.P. Kumar D.J. Kumar,Survey for interlinking of dna models with aadhaar real-time records for enhanced authentication, in:2019 5th International Conference on Advanced Computing Communication Systems (ICACCS), 2019, pp. 208-211.

[61]

X. Jiang, K. Xu, X. Liu, C. Dai, D.A. Clifton, E.A. Clancy, M. Akay, W. Chen, Neuromuscular password-based user authentication, IEEE Trans. Ind. Inf. 17 (4)(2020) 2641-2652.

[62]

Y. Chen, Z. Yang, R. Abbou, P. Lopes, B.Y. Zhao, H. Zheng, Demonstrating user authentication via electrical muscle stimulation, in: Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, ACM, 2021, pp. 1-5.

[63]

T.S. Enamamu, N. Clarke, P. Haskell-Dowland, F. Li, Smart watch based body-temperature authentication, in: 2017 International Conference on Computing Networking and Informatics (ICCNI), IEEE, 2017, pp. 1-7.

[64]

B. Yang, W. Lee, Human body odor based authentication using machine learning, in: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, 2018, pp. 1707-1714.

[65]

J. Chauhan, Y. Hu, S. Seneviratne, A. Misra, A. Seneviratne, Y. Lee, Breathprint: breathing acoustics-based user authentication,in:Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services, ACM, 2017, pp. 278-291.

[66]

A.I. Siam, A. Abou Elazm, N.A. El-Bahnasawy, G.M. El Banby, F.E. Abd El-Samie, Ppg-based human identification using mel-frequency cepstral coefficients and neural networks, Multimed. Tool. Appl. (2021) 1-19.

[67]

S.A. Abdulrahman, B. Alhayani,A comprehensive survey on the biometric systems based on physiological and behavioural characteristics, Mater. Today Proc. (2021) 1-5.

[68]

H. Ning, X. Liu, X. Ye, J. He, W. Zhang, M. Daneshmand, Edge computing-based id and nid combined identification and resolution scheme in iot, IEEE Internet Things J. 6 (4) (2019) 6811-6821.

[69]

A. Saha, J. Saha, B. Sen, An expert multi-modal person authentication system based on feature level fusion of iris and retina recognition, in: 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), IEEE, 2019, pp. 1-5.

[70]

V. Azom, A. Adewumi, J. Tapamo, Face and iris biometrics person identification using hybrid fusion at feature and score-level, in: 2015 Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference (PRASA-RobMech), IEEE, 2015, pp. 207-212.

[71]

S. Ilankumaran, C. Deisy, Multi-biometric authentication system using finger vein and iris in cloud computing, Cluster Comput. 22 (1) (2019) 103-117.

[72]

D. Zhong, M. Li, H. Shao, S. Liu, Palmprint and dorsal hand vein dualmodal biometrics, in: 2018 IEEE International Conference on Multimedia Expo Workshops (ICMEW), IEEE, 2018, pp. 1-6.

[73]

N. Al-johani, L. Elrefaei, Palmprint and dorsal hand vein multi-modal biometric fusion using deep learning, Int. J. Artif. Intel. Mach. Learn. 10 (2020) 18-42.

[74]

D. Ekiz, Y.S. Can, Y.C. Dardağan, F. Aydar, R.D. Köse, C. Ersoy, End-to-end deep multi-modal physiological authentication with smartbands, IEEE Sensor. J. 21 (13) (2021) 14977-14986.

[75]

J. Lv, X. Shao, J. Huang, X. Zhou, X. Zhou, Data augmentation for face recognition, Neurocomputing 230 (2017) 184-196.

[76]

S.L. Albuquerque, C.J. Miosso, A.F. da Rocha, P.R. Gondim, Authentication based on electrocardiography signals and machine learning, Eng. Res. Exp. 3 (2) (2021) 025033.

[77]

T. Kanade, J.F. Cohn,Yingli Tian, Comprehensive database for facial expression analysis, in:Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No.PR00580), IEEE, 2000, pp. 46-53.

[78]

Y. Ouyang, N. Sang, R. Huang, Accurate and robust facial expressions recognition by fusing multiple sparse representation based classifiers, Neurocomputing 149 (2015) 71-78.

[79]

P. Lucey, J.F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, I. Matthews, The extended cohn-kanade dataset (ckþ): a complete dataset for action unit and emotion-specified expression, in: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, IEEE, 2010, pp. 94-101.

[80]

H. Ding, S.K. Zhou, R. Chellappa, Facenet2expnet: regularizing a deep face recognition net for expression recognition, in: 2017 12th IEEE International Conference on Automatic Face Gesture Recognition (FG 2017), IEEE, 2017, pp. 118-126.

[81]

S.Z. Li, D. Yi, Z. Lei, S. Liao,The casia nir-vis 2.0 face database, in: 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops, IEEE, 2013, pp. 348-353.

[82]

X. Wu, L. Song, R. He, T. Tan, Coupled deep learning for heterogeneous face recognition, in: Proceedings of the AAAI Conference on Artificial Intelligence, AAAI Press, 2018, pp. 1-8.

[83]

J. Lu, V.E. Liong, X. Zhou, J. Zhou, Learning compact binary face descriptor for face recognition, IEEE Trans. Pattern Anal. Mach. Intell. 37 (10) (2015) 2041-2056.

[84]

R. He, X. Wu, Z. Sun, T. Tan, Learning invariant deep representation for nir-vis face recognition, in: Thirty-First AAAI Conference on Artificial Intelligence, AAAI Press, 2017, pp. 2000-2006.

[85]

T. Sim, S. Baker, M. Bsat, The cmu pose, illumination, and expression database, IEEE Trans. Pattern Anal. Mach. Intell. 25 (12) (2003) 1615-1618.

[86]

Y. Peng, S. Wang, X. Long, B. Lu, Discriminative graph regularized extreme learning machine and its application to face recognition, Neurocomputing 149 (2015) 340-353.

[87]

C. Ding, C. Xu, D. Tao, Multi-task pose-invariant face recognition, IEEE Trans. Image Process. 24 (3) (2015) 980-993.

[88]

S. Gao, Y. Zhang, K. Jia, J. Lu, Y. Zhang, Single sample face recognition via learning deep supervised autoencoders, IEEE Trans. Inf. Forensics Secur. 10 (10)(2015) 2108-2118.

[89]

R. Gross, I. Matthews, J. Cohn, T. Kanade, S. Baker, Multi-pie, in: 2008 8th IEEE International Conference on Automatic Face Gesture Recognition, IEEE, 2008, pp. 1-8.

[90]

C. Ren, Z. Lei, D. Dai, S.Z. Li, Enhanced local gradient order features and discriminant analysis for face recognition, IEEE Trans. Cybern. 46 (11) (2016) 2656-2669.

[91]

M. Xi, L. Chen, D. Polajnar, W. Tong, Local binary pattern network: a deep learning approach for face recognition, in: 2016 IEEE International Conference on Image Processing (ICIP), IEEE, 2016, pp. 3224-3228.

[92]

C. Ding, D. Tao, Robust face recognition via multimodal deep face representation, IEEE Trans. Multimed. 17 (11) (2015) 2049-2058.

[93]

L. Wolf, T. Hassner, I. Maoz,Face recognition in unconstrained videos with matched background similarity, in: Conference on Computer Vision and Pattern Recognition (CVPR) 2011, IEEE, 2011, pp. 529-534.

[94]

C. Ding, D. Tao, Trunk-branch ensemble convolutional neural networks for video-based face recognition, IEEE Trans. Pattern Anal. Mach. Intell. 40 (4) (2018) 1002-1014.

[95]

D. Yi, Z. Lei, S. Liao,S. Li, Learning Face Representation from Scratch, arXiv preprint arXiv:1411.7923.

[96]

S. Guo, S. Chen, Y. Li, Face recognition based on convolutional neural network and support vector machine, in: 2016 IEEE International Conference on Information and Automation (ICIA), IEEE, 2016, pp. 1787-1792.

[97]

B.F. Klare, B. Klein, E. Taborsky, A. Blanton, J. Cheney, K. Allen, P. Grother, A. Mah, M. Burge, A.K. Jain, Pushing the frontiers of unconstrained face detection and recognition: iarpa janus benchmark a, in: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2015, pp. 1931-1939.

[98]

W. AbdAlmageed, Y. Wu, S. Rawls, S. Harel, T. Hassner, I. Masi, J. Choi, J. Lekust, J. Kim, P. Natarajan, R. Nevatia, G. Medioni, Face recognition using deep multi-pose representations, in: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE, 2016, pp. 1-9.

[99]

D. Maio, D. Maltoni, R. Cappelli, J.L. Wayman, A.K. Jain, Fvc2000: fingerprint verification competition, IEEE Trans. Pattern Anal. Mach. Intell. 24 (3) (2002) 402-412.

[100]

X. Guo, E. Zhu, J. Yin, A fast and accurate method for detecting fingerprint reference point, Neural Comput. Appl. 29 (1) (2018) 21-31.

[101]

L.N. Darlow, B. Rosman, Fingerprint minutiae extraction using deep learning, in: 2017 IEEE International Joint Conference on Biometrics (IJCB), IEEE, 2017, pp. 22-30.

[102]

M.D. Garris, M.D. Garris,NIST Special Database 27: Fingerprint Minutiae from Latent and Matching Tenprint Images, US Department of Commerce, National Institute of Standards and Technology, 2000.

[103]

Y. Tang, F. Gao, J. Feng, Y. Liu, Fingernet: an unified deep network for fingerprint minutiae extraction, in: 2017 IEEE International Joint Conference on Biometrics (IJCB), IEEE, 2017, pp. 108-116.

[104]

D. Maio, D. Maltoni, R. Cappelli, J.L. Wayman, A.K. Jain,Fvc2002: second fingerprint verification competition, in: Object Recognition Supported by User Interaction for Service Robots, 2002, pp. 811-814.

[105]

W. Lee, S. Cho, H. Choi, J. Kim, Partial fingerprint matching using minutiae and ridge shape features for small fingerprint scanners, Expert Syst. Appl. 87 (2017) 183-198.

[106]

D. Maio, D. Maltoni, R. Cappelli, J. Wayman, A. Jain, Fvc2004: third fingerprint verification competition, Biometric Authentication (2004) 31-35.

[107]

L. Ghiani, D. Yambay, V. Mura, S. Tocco, G.L. Marcialis, F. Roli, S. Schuckcrs, Livdet 2013 fingerprint liveness detection competition 2013, in: 2013 International Conference on Biometrics (ICB), IEEE, 2013, pp. 1-6.

[108]

R.F. Nogueira, R. de Alencar Lotufo, R. Campos Machado, Fingerprint liveness detection using convolutional neural networks, IEEE Trans. Inf. Forensics Secur. 11 (6) (2016) 1206-1213.

[109]

F. Marra, G. Poggi, C. Sansone, L. Verdoliva, A deep learning approach for iris sensor model identification, Pattern Recogn. Lett. 113 (OCT.1) (2017) 46-53.

[110]

H. Proenca, S. Filipe, R. Santos, J. Oliveira, L.A. Alexandre, The ubiris.v2: a database of visible wavelength iris images captured on-the-move and at-a-distance, IEEE Trans. Pattern Anal. Mach. Intell. 32 (8) (2010) 1529-1535.

[111]

S. Bazrafkan, S. Thavalengal, P. Corcoran, An end to end deep neural network for iris segmentation in unconstrained scenarios, Neural Network. 106 (2018) 79-95.

[112]

M. Arsalan, H. Hong, R. Naqvi, M. Lee, M. Kim, D. Kim, C. Kim, K. Park, Deep learning-based iris segmentation for iris recognition in visible light environment, Symmetry 9 (11) (2017) 263.

[113]

Casia iris image database. http://biometrics.idealtest.org/, 2012. (Accessed 3 November 2020).

[114]

D. Sánchez, P. Melin, J. Carpio, H. Puga, A firefly algorithm for modular granular neural networks optimization applied to iris recognition, in: 2016 International Joint Conference on Neural Networks (IJCNN), IEEE, 2016, pp. 139-144.

[115]

M. Baqar, A. Ghani, A. Aftab, S. Arbab, S. Yasin, Deep belief networks for iris recognition based on contour detection, in: 2016 International Conference on Open Source Systems Technologies (ICOSST), IEEE, 2016, pp. 72-77.

[116]

S. Khalighi, F. Pak, P. Tirdad, U. Nunes,Iris recognition using robust localization and nonsubsampled contourlet based features, J. Signal Proc. Syst. 81 (1) (2015) 111-128.

[117]

S.S. Salve, S.P. Narote, Iris recognition using svm and ann, in: 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), IEEE, 2016, pp. 474-478.

[118]

K. Bowyer, P. Flynn, The Nd-Iris-0405 Iris Image Dataset, arXiv preprint arXiv: 1606.04853.

[119]

A. Gangwar, A. Joshi, Deepirisnet: deep iris representation with applications in iris recognition and cross-sensor iris recognition, in: 2016 IEEE International Conference on Image Processing (ICIP), IEEE, 2016, pp. 2301-2305.

[120]

N. Kohli, D. Yadav, M. Vatsa, R. Singh, Revisiting iris recognition with color cosmetic contact lenses, in: 2013 International Conference on Biometrics (ICB), IEEE, 2013, pp. 1-7.

[121]

P.R. Nalla, A. Kumar, Toward more accurate iris recognition using cross-spectral matching, IEEE Trans. Image Process. 26 (1) (2017) 208-221.

[122]

J. Staal, M.D. Abramoff, M. Niemeijer, M.A. Viergever, B. van Ginneken,Ridge-based vessel segmentation in color images of the retina, IEEE Trans. Med. Imag. 23 (4) (2004) 501-509.

[123]

S.N. Kakarwal, R.R. Deshmukh, Analysis of retina recognition by correlation and covariance matrix, in: 2010 3rd International Conference on Emerging Trends in Engineering and Technology, IEEE, 2010, pp. 496-499.

[124]

R. Vega, G. Sanchez-Ante, L. Falcon-Morales, H. Sossa, E. Guevara, Retinal vessel extraction using lattice neural networks with dendritic processing, Comput. Biol. Med. 58 (2015) 20-30.

[125]

D. Zhang, W.K. Kong, J. You, M. Wong, Online palmprint identification, IEEE Trans. Pattern Anal. Mach. Intell. 25 (9) (2003) 1041-1050.

[126]

W. Jia, B. Wang, Y. Zhao, H. Min, H. Feng, A performance evaluation of hashing techniques for 2d and 3d palmprint retrieval and recognition, IEEE Sensor. J. 20 (20) (2020) 11864-11873.

[127]

K. Zhou, X. Zhou, L. Yu, L. Shen, S. Yu, Double biologically inspired transform network for robust palmprint recognition, Neurocomputing 337 (2019) 24-45.

[128]

I. Rida, S. Al-Maadeed, A. Mahmood, A. Bouridane, S. Bakshi, Palmprint identification using an ensemble of sparse representations, IEEE Access 6 (2018) 3241-3248.

[129]

W. Jia, B. Zhang, J. Lu, Y. Zhu, Y. Zhao, W. Zuo, H. Ling, Palmprint recognition based on complete direction representation, IEEE Trans. Image Process. 26 (9)(2017) 4483-4498.

[130]

Z. Sun, T. Tan, Y. Wang, S.Z. Li, Ordinal palmprint represention for personal identification [represention read representation], in: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), IEEE, 2005, pp. 279-284.

[131]

X. Bao, Z. Guo, Extracting region of interest for palmprint by convolutional neural networks, in: 2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA), IEEE, 2016, pp. 1-6.

[132]

G. Wang, W. Kang, Q. Wu, Z. Wang, J. Gao, Generative adversarial network (gan) based data augmentation for palmprint recognition, in: 2018 Digital Image Computing: Techniques and Applications (DICTA), IEEE, 2018, pp. 1-7.

[133]

L. Lu, X. Zhang, X. Xu, Hypercomplex extreme learning machine with its application in multispectral palmprint recognition, PLoS One 14 (4) (2019) e0209083.

[134]

R. Mokni, M. Kherallah, Novel palmprint biometric system combining several fractal methods for texture information extraction, in: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), IEEE, 2016, 002267-002272.

[135]

D. Tamrakar, P. Khanna, Occlusion invariant palmprint recognition with ulbp histograms, Procedia Comput. Sci. 54 (2015) 491-500.

[136]

A. Genovese, V. Piuri, K.N. Plataniotis, F. Scotti, Palmnet: gabor-pca convolutional networks for touchless palmprint recognition, IEEE Trans. Inf. Forensics Secur. 14 (12) (2019) 3160-3174.

[137]

J. Svoboda, J. Masci, M.M. Bronstein, Palmprint recognition via discriminative index learning, in: 2016 23rd International Conference on Pattern Recognition (ICPR), IEEE, 2016, pp. 4232-4237.

[138]

G. Jaswal, R. Nath, A. Kaul, Texture based palm print recognition using 2-d gabor filter and sub space approaches, in: 2015 International Conference on Signal Processing, Computing and Control (ISPCC), IEEE, 2015, pp. 344-349.

[139]

Iit Delhi touchless palmprint database (version 1.0). http://www4.comp.polyu.edu.hk/csajaykr/IITD/Database_Palm.htm, 2007. (Accessed 5 November 2020).

[140]

D. Zhang, G. Lu, W. Li, L. Zhang, N. Luo, Palmprint recognition using 3-d infor-mation, IEEE Trans. Syst. Man Cybern. C Appl. Rev. 39 (5) (2009) 505-519.

[141]

D. Zhang, Z. Guo, G. Lu, L. Zhang, W. Zuo, An online system of multispectral palmprint verification, IEEE Trans. Instrum. Meas. 59 (2) (2010) 480-490.

[142]

S. Minaee, A. Abdolrashidi, Highly accurate palmprint recognition using statistical and wavelet features, in: 2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE), IEEE, 2015, pp. 31-36.

[143]

A. Michele, V. Colin, D. Santika, Mobilenet convolutional neural networks and support vector machines for palmprint recognition, Procedia Comput. Sci. 157 (2019) 110-117.

[144]

J. Grover, M. Hanmandlu, The fusion of multispectral palmprints using the information set based features and classifier, Eng. Appl. Artif. Intell. 67 (2018) 111-125.

[145]

Y. Yin, L. Liu, X. Sun, Sdumla-hmt: a multimodal biometric database,in: Chinese Conference on Biometric Recognition, Springer, 2011, pp. 260-268.

[146]

Y. Fang, Q. Wu, W. Kang, A novel finger vein verification system based on two-stream convolutional network learning, Neurocomputing 290 (2018) 100-107.

[147]

H. Hong, M. Lee, K. Park, Convolutional neural network-based finger-vein recognition using nir image sensors, Sensors 17 (6) (2017) 1297.

[148]

W. Yang, S. Wang, J. Hu, G. Zheng, J. Yang, C. Valli, Securing deep learning based edge finger vein biometrics with binary decision diagram, IEEE Trans. Ind. Inf. 15 (7) (2019) 4244-4253.

[149]

W. Yang, S. Wang, J. Hu, G. Zheng, J. Chaudhry, E. Adi, C. Valli, Securing mobile healthcare data: a smart card based cancelable finger-vein bio-cryptosystem, IEEE Access 6 (2018) 36939-36947.

[150]

A. Kumar, Y. Zhou, Human identification using finger images, IEEE Trans. Image Process. 21 (4) (2012) 2228-2244.

[151]

C. Liu, Y. Kim, An efficient finger-vein extraction algorithm based on random forest regression with efficient local binary patterns, in: 2016 IEEE International Conference on Image Processing (ICIP), IEEE, 2016, pp. 3141-3145.

[152]

Y. Lu, S.J. Xie, S. Yoon, Z. Wang, D.S. Park, An available database for the research of finger vein recognition, in: 2013 6th International Congress on Image and Signal Processing (CISP), IEEE, 2013, pp. 410-415.

[153]

Y. Lu, S. Wu, Z. Fang, N. Xiong, S. Yoon, D. Park, Exploring finger vein based personal authentication for secure iot, Future Generat. Comput. Syst. 77 (2017) 149-160.

[154]

B. Ton, R. Veldhuis, A high quality finger vascular pattern dataset collected using a custom designed capturing device, in: 2013 International Conference on Biometrics (ICB), IEEE, 2013, pp. 1-5.

[155]

M. Haghighat, M. Abdel-Mottaleb, W. Alhalabi, Fully automatic face normalization and single sample face recognition in unconstrained environments, Expert Syst. Appl. 47 (2016) 23-34.

[156]

S. Nagpal, M. Singh, R. Singh, M. Vatsa, Regularized deep learning for face recognition with weight variations, IEEE Access 3 (2015) 3010-3018.

[157]

F. Zhang, J. Feng, High-resolution mobile fingerprint matching via deep joint knn-triplet embedding, in: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI Press, 2017, pp. 5019-5020.

[158]

N.K. Shaydyuk, T. Cleland, Biometric identification via retina scanning with liveness detection using speckle contrast imaging, in: 2016 IEEE International Carnahan Conference on Security Technology (ICCST), IEEE, 2016, pp. 1-5.

[159]

S. Qamber, Z. Waheed, M.U. Akram, Personal identification system based on vascular pattern of human retina, in: 2012 Cairo International Biomedical Engineering Conference (CIBEC), IEEE, 2012, pp. 64-67.

[160]

M. Abukmeil, H. Elaydi, M. Alhanjouri, Palmprint recognition via bandlet, ridgelet, wavelet and neural network, J. Comput. Sci. Appl. 3 (2) (2015) 23-28.

[161]

Y. Matsuda, N. Miura, A. Nagasaka, H. Kiyomizu, T. Miyatake, Finger-vein authentication based on deformation-tolerant feature-point matching, Mach. Vis. Appl. 27 (2) (2016) 237-250.

[162]

S. Barra, A. Casanova, F. Narducci, S. Ricciardi, Ubiquitous iris recognition by means of mobile devices, Pattern Recogn. Lett. 57 (2015) 66-73.

[163]

Y. Lu, S. Wu, Z. Fang, N. Xiong, S. Yoon, D. Park, Exploring finger vein based personal authentication for secure iot, Future Generat. Comput. Syst. 77 (2017) 149-160.

[164]

M. Sajjad, M. Nasir, K. Muhammad, S. Khan, Z. Jan, A. Sangaiah, M. Elhoseny, S. Baik, Raspberry pi assisted face recognition framework for enhanced law-enforcement services in smart cities, Future Generat. Comput. Syst. 108 (2020) 995-1007.

[165]

Z. Fang, Z. Lu, Deep belief network based finger vein recognition using histograms of uniform local binary patterns of curvature gray images, Int. J. Innov. Comput. Inform. Control 15 (5) (2019) 1701-1715.

[166]

D. Sánchez, P. Melin, O. Castillo, Optimization of modular granular neural networks using a firefly algorithm for human recognition, Eng. Appl. Artif. Intell. 64 (2017) 172-186.

[167]

K. Itqan, A. Syafeeza, F. Gong, N. Mustafa, Y. Wong, M. Ibrahim, User identification system based on finger-vein patterns using convolutional neural network, ARPN J. Eng. Appl. Sci. 11 (5) (2016) 3316-3319.

[168]

N.A. Al-johani, L.A. Elrefaei, Palmprint and dorsal hand vein multi-modal biometric fusion using deep learning, Int. J. Artif. Int. Mach. Learn. (IJAIML) 10 (2) (2020) 18-42.

[169]

D. Peralta, I. Triguero, S. García, Y. Saeys, J.M. Benitez, F. Herrera, On the use of convolutional neural networks for robust classification of multiple fingerprint captures, Int. J. Intell. Syst. 33 (1) (2018) 213-230.

[170]

A. Jalali, R. Mallipeddi, M. Lee, Deformation invariant and contactless palmprint recognition using convolutional neural network, in: Proceedings of the 3rd International Conference on Human-Agent Interaction, ACM, 2015, pp. 209-212.

[171]

M. Haghighat, M. Abdel-Mottaleb, W. Alhalabi, Fully automatic face normalization and single sample face recognition in unconstrained environments, Expert Syst. Appl. 47 (2016) 23-34.

[172]

X. Yang, C. Yang, Z. Yao, The finger vein recognition based on shearlet, in: 2016 8th International Conference on Wireless Communications Signal Processing (WCSP), IEEE, 2016, pp. 1-5.

[173]

X. Guo, E. Zhu, J. Yin, A fast and accurate method for detecting fingerprint reference point, Neural Comput. Appl. 29 (1) (2018) 21-31.

[174]

Q. Guo, B. Qiao, Research on the finger vein image capture and finger edge extraction, in: 2017 IEEE International Conference on Mechatronics and Automation (ICMA), IEEE, 2017, pp. 275-279.

[175]

G. Huang, Q. Zhu, C. Siew, Extreme learning machine: theory and applications, Neurocomputing 70 (1-3) (2006) 489-501.

[176]

S. Sabour, N. Frosst, G.E. Hinton, Dynamic routing between capsules, Adv. Neural Inf. Process. Syst. 30 (2017) 1-11.

[177]

A. Ruderman, N. C. Rabinowitz, A. S. Morcos,D. Zoran, Pooling Is Neither Necessary Nor Sufficient for Appropriate Deformation Stability in Cnns, arXiv preprint arXiv:1804.04438.

[178]

Y. Liu, J. Ling, Z. Liu, J. Shen, C. Gao, Finger vein secure biometric template generation based on deep learning, Soft Comput. 22 (7) (2018) 2257-2265.

[179]

S. Teerapittayanon, B. McDanel, H.-T. Kung, Distributed deep neural networks over the cloud, the edge and end devices, in: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), IEEE, 2017, pp. 328-339.

[180]

Y. He, X. Zhang, J. Sun, Channel pruning for accelerating very deep neural networks, in: 2017 IEEE International Conference on Computer Vision (ICCV), IEEE, 2017, pp. 1398-1406.

[181]

M. Wang, B. Liu, H. Foroosh, Factorized convolutional neural networks, in: Proceedings of the IEEE International Conference on Computer Vision Workshops, IEEE, 2017, pp. 545-553.

[182]

S. Fairuz, M.H. Habaebi, E.M.A. Elsheikh, Pre-trained based cnn model to identify finger vein, Bullet. Electr. Eng. Inf. 8 (3) (2019) 855-862.

[183]

S. Li, H. Zhang, J. Yang, Finger vein recognition based on local graph structural coding and cnn, in: Tenth International Conference on Graphics and Image Processing (ICGIP 2018), International Society for Optics and Photonics, 2019, p. 110693I.

[184]

S.P. Chinchali, E. Cidon, E. Pergament, T. Chu, S. Katti, Neural networks meet physical networks: distributed inference between edge devices and the cloud,in:Proceedings of the 17th ACM Workshop on Hot Topics in Networks, ACM, 2018, pp. 50-56.

[185]

Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, L. Tang, Neurosurgeon: collaborative intelligence between the cloud and mobile edge, Comput. Architect. News 45 (1) (2017) 615-629.

[186]

P.M. Grulich, F. Nawab,Collaborative edge and cloud neural networks for real-time video processing, Proc. VLDB Endow. 11 (12) (2018) 2046-2049.

[187]

P. Hu, H. Ning, T. Qiu, Y. Zhang, X. Luo, Fog computing based face identification and resolution scheme in internet of things, IEEE Trans. Ind. Inf. 13 (4) (2017) 1910-1920.

[188]

X. Peng, J. Yu, B. Yao, L. Liu, Y. Peng, A review of fpga-based custom computing architecture for convolutional neural network inference, Chin. J. Electron. 30 (1)(2021) 1-17.

[189]

Iit Delhi iris database (version 1.0) (2020). 2008. http://web.iitd.ac.in/biometrics/DatabaseI.ris.htm. (accessed 27 December 2020).

[190]

A. Kuznetsov, S. Fedotov, M. Bagmut, Convolutional neural networks to protect against spoofing attacks on biometric face authentication, in: PLAIS EuroSymposium on Digital Transformation, Springer, 2021, pp. 123-146.

[191]

J. Su, D.V. Vargas, K. Sakurai, One pixel attack for fooling deep neural networks, IEEE Trans. Evol. Comput. 23 (5) (2019) 828-841.

[192]

M. Gomez-Barrero, C. Rathgeb, U. Scherhag, C. Busch, Is your biometric system robust to morphing attacks?, in: 2017 5th International Workshop on Biometrics and Forensics (IWBF) IEEE, 2017, pp. 1-6.

AI Summary AI Mindmap
PDF

170

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/