An artificial intelligence diabetes management architecture based on 5G

Ruochen Huang , Wei Feng , Shan Lu , Tao shan , Changwei Zhang , Yun Liu

›› 2024, Vol. 10 ›› Issue (1) : 75 -82.

PDF
›› 2024, Vol. 10 ›› Issue (1) :75 -82. DOI: 10.1016/j.dcan.2022.09.004
Special issue on intelligent communications technologies for B5G
research-article

An artificial intelligence diabetes management architecture based on 5G

Author information +
History +
PDF

Abstract

Along with the development of 5G network and Internet of Things technologies, there has been an explosion in personalized healthcare systems. When the 5G and Artificial Intelligence (AI) is introduced into diabetes management architecture, it can increase the efficiency of existing systems and complications of diabetes can be handled more effectively by taking advantage of 5G. In this article, we propose a 5G-based Artificial Intelligence Diabetes Management architecture (AIDM), which can help physicians and patients to manage both acute complications and chronic complications. The AIDM contains five layers: the sensing layer, the transmission layer, the storage layer, the computing layer, and the application layer. We build a test bed for the transmission and application layers. Specifically, we apply a delay-aware RA optimization based on a double-queue model to improve access efficiency in smart hospital wards in the transmission layer. In application layer, we build a prediction model using a deep forest algorithm. Results on real-world data show that our AIDM can enhance the efficiency of diabetes management and improve the screening rate of diabetes as well.

Keywords

Diabetes / 5G / Artificial intelligence / Deep forest / Smart hospital ward

Cite this article

Download citation ▾
Ruochen Huang, Wei Feng, Shan Lu, Tao shan, Changwei Zhang, Yun Liu. An artificial intelligence diabetes management architecture based on 5G. , 2024, 10(1): 75-82 DOI:10.1016/j.dcan.2022.09.004

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. Zhou, D. Wu, J. Chen, X. Wei, Cross-modal collaborative communications, IEEE Wireless Commun. 27 (2) (2019) 112-117.

[2]

FROM HEALTHCARE TO HOMECARE the Critical Role of 5G in Healthcare Transformation, Ericsson, 2017.

[3]

M. Chen, Y. Zhang, M. Qiu, N. Guizani, Y. Hao, Spha: smart personal health advisor based on deep analytics, IEEE Commun. Mag. 56 (3) (2018) 164-169.

[4]

L. Zhou, D. Wu, X. Wei, J. Chen, Cross-modal stream scheduling for ehealth, IEEE J. Sel. Area. Commun. 39 (2) (2020) 426-437.

[5]

R.L. Thomas, S. Halim, S. Gurudas, S. Sivaprasad, D.R. Owens, IDF Diabetes Atlas: a review of studies utilising retinal photography on the global prevalence of diabetes related retinopathy between 2015 and 2018, Diabetes Res. Clin. Pract. 157 (2019) 107840.

[6]

S. El-Sappagh, F. Ali, S. El-Masri, K. Kim, A. Ali, K.-S. Kwak, Mobile health technologies for diabetes mellitus: current state and future challenges, IEEE Access 7 (2018) 21917-21947.

[7]

M. Rigla, I. Martínez-Sarriegui, G. García-Sáez, B. Pons, M.E. Hernando, Gestational diabetes management using smart mobile telemedicine, J. Diabetes Sci. Technol. 12 (2) (2018) 260-264.

[8]

I. Contreras, S. Kiefer, J. Vehi, Adaptive Workflows for Diabetes Management:Self-Management Assistant and Remote Treatment for Diabetes, IOS Press, 2017.

[9]

M.M. Alotaibi, R. Istepanian, N. Philip,A Mobile Diabetes Management and Educational System for Type-2 Diabetics in saudi arabia (Saed), Mhealth 2 (2016) 33-39.

[10]

M. Chen, J. Yang, J. Zhou, Y. Hao, J. Zhang, C.-H. Youn, 5g-smart diabetes: toward personalized diabetes diagnosis with healthcare big data clouds, IEEE Commun. Mag. 56 (4) (2018) 16-23.

[11]

J. Lloret, L. Parra, M. Taha, J. Tomás, An architecture and protocol for smart continuous ehealth monitoring using 5g, Comput. Network. 129 (2017) 340-351.

[12]

G. Gardašević, K. Katzis, D. Bajić, L. Berbakov, Emerging wireless sensor networks and internet of things technologies—foundations of smart healthcare, Sensors 20 (13) (2020) 3619.

[13]

S. Cao, X. Zhang, R. Xu, Toward secure storage in cloud-based ehealth systems: a blockchain-assisted approach, IEEE Network 34 (2) (2020) 64-70.

[14]

M. Chen, X. Wei, J. Chen, L. Wang, L. Zhou, Integration and provision for city public service in smart city cloud union: architecture and analysis, IEEE Wireless Commun. 27 (2) (2020) 148-154.

[15]

W.Y.B. Lim, N.C. Luong, D.T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang, D. Niyato, C. Miao, Federated learning in mobile edge networks: a comprehensive survey, IEEE Commun. Surv. Tutorials 22 (3) (2020) 2031-2063.

[16]

S. Duan, V. Shah-Mansouri, Z. Wang, V.W. Wong, D-acb, Adaptive congestion control algorithm for bursty m2m traffic in lte networks, IEEE Trans. Veh. Technol. 65 (12) (2016) 9847-9861.

[17]

S.-Y. Lien, K.-C. Chen, Y. Lin, Toward ubiquitous massive accesses in 3gpp machine-to-machine communications, IEEE Commun. Mag. 49 (4) (2011) 66-74.

[18]

S.-Y. Lien, K.-C. Chen, Massive access management for qos guarantees in 3gpp machine-to-machine communications, IEEE Commun. Lett. 15 (3) (2011) 311-313.

[19]

P. Si, J. Yang, S. Chen, H. Xi, Adaptive massive access management for qos guarantees in m2m communications, IEEE Trans. Veh. Technol. 64 (7) (2014) 3152-3166.

[20]

W. Zhan, L. Dai, Massive random access of machine-to-machine communications in lte networks: modeling and throughput optimization, IEEE Trans. Wireless Commun. 17 (4) (2018) 2771-2785.

[21]

C. Zhang, X. Sun, J. Zhang, X. Wang, S. Jin, H. Zhu, Throughput optimization with delay guarantee for massive random access of m2m communications in industrial iot, IEEE Internet Things J. 6 (6) (2019) 10077-10092.

[22]

Z.-H. Zhou, J. Feng, Deep forest, Natl. Sci. Rev. 6 (1) (2019) 74-86.

[23]

Y.-L. Zhang, J. Zhou, W. Zheng, J. Feng, L. Li, Z. Liu, M. Li, Z. Zhang, C. Chen, X. Li, et al., Distributed deep forest and its application to automatic detection of cash-out fraud, ACM Trans. Intell. Syst. Technol. 10 (5) (2019) 1-19.

AI Summary AI Mindmap
PDF

44

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/