T2L: A traceable and trustable consortium blockchain for logistics

Ming He , Haodi Wang , Yunchuan Sun , Rongfang Bie , Tian Lan , Qi Song , Xi Zeng , Matevž Pustisĕk , Zhenyu Qiu

›› 2025, Vol. 11 ›› Issue (5) : 1385 -1393.

PDF
›› 2025, Vol. 11 ›› Issue (5) :1385 -1393. DOI: 10.1016/j.dcan.2022.06.015
Regular Papers
research-article

T2L: A traceable and trustable consortium blockchain for logistics

Author information +
History +
PDF

Abstract

Traceability and trustiness are two critical issues in the logistics sector. Blockchain provides a potential way for logistics tracking systems due to its traits of tamper resistance. However, it is non-trivial to apply blockchain on logistics because of firstly, the binding relationship between virtue data and physical location cannot be guar- anteed so that frauds may exist. Secondly, it is neither practical to upload complete data on the blockchain due to the limited storage resources nor convincing to trust the digest of the data. This paper proposes a traceable and trustable consortium blockchain for logistics T2L to provide an efficient solution to the mentioned problems. Specifically, the authenticated geocoding data from telecom operators’ base stations are adopted to ensure the location credibility of the data before being uploaded to the blockchain for the purpose of reliable traceability of the logistics. Moreover, we propose a scheme based on Zero Knowledge Proof of Retrievability (ZK BLS-PoR) to ensure the trustiness of the data digest and the proofs to the blockchain. Any user in the system can check the data completeness by verifying the proofs instead of downloading and examining the whole data based on the pro- posed ZK BLS- PoR scheme, which can provide solid theoretical verification. In all, the proposed T2L framework is a traceable and trustable logistics system with a high level of security.

Keywords

Consortium blockchain / Logistics / Base station / Proof of Retrievability

Cite this article

Download citation ▾
Ming He, Haodi Wang, Yunchuan Sun, Rongfang Bie, Tian Lan, Qi Song, Xi Zeng, Matevž Pustisĕk, Zhenyu Qiu. T2L: A traceable and trustable consortium blockchain for logistics. , 2025, 11(5): 1385-1393 DOI:10.1016/j.dcan.2022.06.015

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina, T. Prescher, D. Gruss, Zombieload: cross-privilege-boundary data sampling,in: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, 2019, pp. 753-768.

[2]

S. Wu, M.-A. Rizoiu, L. Xie, Variation across scales: measurement fidelity under twitter data sampling, Proc. Int. AAAI Conf. Web Soc. Media 14 (2020) 715-725.

[3]

S. Ramírez-Gallego, B. Krawczyk, S. García, M. Wo´zniak, F. Herrera, A survey on data preprocessing for data stream mining: current status and future directions, Neurocomputing 239 (2017) 39-57.

[4]

P. Ranganathan, C. Pramesh, R. Aggarwal, Common pitfalls in statistical analysis: logistic regression, Perspect. Clin. Res. 8 (3) (2017) 148-151.

[5]

S. Sun, J. Zhu, X. Zhou, Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies, Nat. Methods 17 (2) (2020) 193-200.

[6]

S.A. Alasadi, W.S. Bhaya, Review of data preprocessing techniques in data mining, J. Eng. Appl. Sci. 12 (16) (2017) 4102-4107.

[7]

S.A. Salloum, M. Alshurideh, A. Elnagar, K. Shaalan, Mining in Educational Data: Review and Future Directions, AICV, 2020, pp. 92-102.

[8]

M. Nofer, P. Gomber, O. Hinz, D. Schiereck, Blockchain, Bus. Inf. Syst. Eng. 59 (3) (2017) 183-187.

[9]

T.J. Soon, Qr code, Synthesis Journal. 2008 ( 2008) 59-78.

[10]

H. Li, D. Han, M. Tang, Logisticschain: a blockchain-based secure storage scheme for logistics data, Mobile Information Systems 2021 ( 2021) 1-15.

[11]

M. Humayun, N. Jhanjhi, B. Hamid, G. Ahmed, Emerging smart logistics and transportation using iot and blockchain, IEEE Internet Things Mag. 3 (2) (2020) 58-62.

[12]

L. Xu, L. Chen, Z. Gao, Y. Chang, E. Iakovou, W. Shi, Binding the physical and cyber worlds: a blockchain approach for cargo supply chain security enhancement, in: 2018 IEEE International Symposium on Technologies for Homeland Security (HST), IEEE, 2018, pp. 1-5.

[13]

N. Zhang, Smart logistics path for cyber-physical systems with internet of things, IEEE Access 6 (2018) 70808-70819.

[14]

Y. Zhang, Z. Guo, J. Lv, Y. Liu, A framework for smart production-logistics systems based on cps and industrial iot, IEEE Trans. Ind. Inf. 14 (9) (2018) 4019-4032.

[15]

X. Tang, Research on smart logistics model based on internet of things technology, IEEE Access 8 (2020) 151150-151159.

[16]

G. Perboli, V. Capocasale, D. Gotta, Blockchain-based transaction management in smart logistics: a sawtooth framework, in: 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC), IEEE, 2020, pp. 1713-1718.

[17]

M. Westerkamp, F. Victor, A. Küpper, Tracing manufacturing processes using blockchain-based token compositions, Digit. Commun. Netw. 6 (2) (2020) 167-176.

[18]

S. Nakamoto, A. Bitcoin, A peer-to-peer electronic cash system, Bitcoin.-URL: https://bitcoin.org/bitcoin.pdf.4.

[19]

M.S. Ali, M. Vecchio, M. Pincheira, K. Dolui, F. Antonelli, M.H. Rehmani, Applications of blockchains in the internet of things: a comprehensive survey, IEEE Commun. Surv. Tutor. 21 (2) (2018) 1676-1717.

[20]

D. Guegan, Public Blockchain versus Private Blockhain. (2017)

[21]

Z. Fu, P. Dong, Y. Ju, An intelligent electric vehicle charging system for new energy companies based on consortium blockchain, J. Clean. Prod. 261 (2020) 121219.

[22]

Z. Yu, D. Xue, J. Fan, C. Guo, Dnstsm: Dns cache resources trusted sharing model based on consortium blockchain, IEEE Access 8 (2020) 13640-13650.

[23]

M. Castro, B. Liskov, et al., Practical byzantine fault tolerance, OSDI 99 (1999) 173-186.

[24]

M. Abd-El-Malek, G.R. Ganger, G.R. Goodson, M.K. Reiter, J.J. Wylie, Fault-scalable byzantine fault-tolerant services, ACM SIGOPS - Oper. Syst. Rev. 39 (5) (2005) 59-74.

[25]

A. Clement, E.L. Wong, L. Alvisi, M. Dahlin, M. Marchetti, Making byzantine fault tolerant systems tolerate byzantine faults, NSDI 9 (2009) 153-168.

[26]

B. Cao, Z. Zhang, D. Feng, S. Zhang, L. Zhang, M. Peng, Y. Li, Performance analysis and comparison of pow, pos and dag based blockchains, Digit. Commun. Netw. 6(4) (2020) 480-485.

[27]

Y. Liu, Q. Lu, S. Chen, Q. Qu, H. O'Connor, K.-K. R. Choo, H. Zhang, Capability based Iot Access Control Using Blockchain, Digit. Commun. Netw. 4 (7) (2021) 463-469.

[28]

L. Zhou, H.-C. Chao, Multimedia traffic security architecture for the internet of things, IEEE Netw. 25 (3) (2011) 35-40.

[29]

M.E. Halstead, K.D. Walter, et al., Sport-related concussion in children and adolescents, Pediatrics 126 (3) (2010) 597-615.

[30]

M. Arrington, Gmail disaster: reports of mass email deletions, Online at http://www.techcrunch.com/2006/12/28/gmail-disasterreports-of-mass-email-deletions.

[31]

A. Juels, B.S. Kaliski Jr., Pors: proofs of retrievability for large files,in: Proceedings of the 14th ACM Conference on Computer and Communications Security, 2007, pp. 584-597.

[32]

Y. Dodis, S. Vadhan, D. Wichs, Proofs of retrievability via hardness amplification, in: Proceedings of Theory of Cryptography Conference, Springer, 2009, pp. 109-127.

[33]

K.D. Bowers, A. Juels, A. Oprea, Proofs of retrievability: theory and implementation,in: Proceedings of the 2009 ACM Workshop on Cloud Computing Security, 2009, pp. 43-54.

[34]

K.D. Bowers, A. Juels, A. Oprea, Hail: a high-availability and integrity layer for cloud storage,in: Proceedings of the 16th ACM Conference on Computer and Communications Security, 2009, pp. 187-198.

[35]

H. Shacham, B. Waters, Compact proofs of retrievability, in: International Conference on the Theory and Application of Cryptology and Information Security, Springer, 2008, pp. 90-107.

[36]

S. Goldwasser, S. Micali, C. Rackoff, The knowledge complexity of interactive proof systems, SIAM J. Comput. 18 (1) (1989) 186-208.

[37]

M. Blum, P. Feldman, S. Micali, Non-interactive zero-knowledge and its applications, in: Providing Sound Foundations for Cryptography: on the Work of Shafi Goldwasser and Silvio Micali, 2019, pp. 329-349.

[38]

J. Kilian,A note on efficient zero-knowledge proofs and arguments, in:Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, 1992, pp. 723-732.

[39]

E.B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, M. Virza, Zerocash: decentralized anonymous payments from bitcoin, in: 2014 IEEE Symposium on Security and Privacy, IEEE, 2014, pp. 459-474.

[40]

J. Groth, Short pairing-based non-interactive zero-knowledge arguments, in: Advances in Cryptology-ASIACRYPT 2010: 16 th International Conference on the Theory and Application of Cryptology and Information Security, Singapore, December 5-9, 2010. Proceedings 16, Springer, 2010, pp. 321-340.

[41]

J. Groth,On the size of pairing-based non-interactive arguments, in:Advances in Cryptology-EUROCRYPT 2016: 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II 35, Springer, 2016, pp. 305-326.

[42]

R. Gennaro, C. Gentry, B. Parno, M. Raykova, Quadratic span programs and succinct nizks without pcps, in: Annual International Conference on the Theory and Applications of Cryptographic Techniques, Springer, 2013, pp. 626-645.

[43]

B. Parno, J. Howell, C. Gentry, M. Raykova, Pinocchio: nearly practical verifiable computation, in: 2013 IEEE Symposium on Security and Privacy, IEEE, 2013, pp. 238-252.

[44]

J. Groth, M. Kohlweiss, M. Maller, S. Meiklejohn, I. Miers, Updatable and universal common reference strings with applications to zk-snarks, in: Annual International Cryptology Conference, Springer, 2018, pp. 698-728.

[45]

M. Maller, S. Bowe, M. Kohlweiss, S. Meiklejohn, Sonic: Zero-knowledge snarks from linear-size universal and updatable structured reference strings,in: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, 2019, pp. 2111-2128.

[46]

S. Bowe, J. Grigg, D. Hopwood, Recursive proof composition without a trusted setup, Cryptol. ePrint Arch., Tech. Rep. 1021 (2019) 2019.

[47]

A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, N. Ward, Marlin: preprocessing zksnarks with universal and updatable srs,in: Annual International Conference on the Theory and Applications of Cryptographic Techniques, Springer, Cham, 2020, pp. 738-768.

[48]

A. Gabizon, Z.J. Williamson, O. Ciobotaru, Plonk: permutations over Lagrange- bases for oecumenical noninteractive arguments of knowledge, IACR Cryptol. ePrint Arch. 2019 ( 2019) 953.

[49]

E. Ben-Sasson, I. Bentov, Y. Horesh, M. Riabzev, Fast reed-solomon interactive oracle proofs of proximity, in: 45th International Colloquium on Automata, Languages, and Programming (Icalp 2018), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[50]

E. Ben-Sasson, I. Bentov, Y. Horesh, M. Riabzev, Scalable, transparent, and post- quantum secure computational integrity, IACR Cryptol. ePrint Arch. 2018 ( 2018) 46.

[51]

J. Bootle, A. Cerulli, P. Chaidos, J. Groth, C. Petit,Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting, in:Advances in Cryptology-EUROCRYPT 2016: 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II 35, Springer, 2016, pp. 327-357.

[52]

B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, G. Maxwell, Bulletproofs: short proofs for confidential transactions and more, in: 2018 IEEE Symposium on Security and Privacy (SP), IEEE, 2018, pp. 315-334.

[53]

D. Boneh, M. Franklin, Identity-based encryption from the weil pairing, in: Annual International Cryptology Conference, Springer, 2001, pp. 213-229.

AI Summary AI Mindmap
PDF

198

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/