Analysis on unit maximum capacity of orthogonal multiple watermarking for multimedia signals in B5G wireless communications

Mianjie Li , Senfeng Lai , Jiao Wang , Zhihong Tian , Nadra Guizani , Xiaojiang Du , Chun Shan

›› 2024, Vol. 10 ›› Issue (1) : 38 -44.

PDF
›› 2024, Vol. 10 ›› Issue (1) :38 -44. DOI: 10.1016/j.dcan.2022.05.009
Special issue on intelligent communications technologies for B5G
research-article

Analysis on unit maximum capacity of orthogonal multiple watermarking for multimedia signals in B5G wireless communications

Author information +
History +
PDF

Abstract

Beyond-5G (B5G) aims to meet the growing demands of mobile traffic and expand the communication space. Considering that intelligent applications to B5G wireless communications will involve security issues regarding user data and operational data, this paper analyzes the maximum capacity of the multi-watermarking method for multimedia signal hiding as a means of alleviating the information security problem of B5G. The multi-watermarking process employs spread transform dither modulation. During the watermarking procedure, Gram-Schmidt orthogonalization is used to obtain the multiple spreading vectors. Consequently, multiple wa- termarks can be simultaneously embedded into the same position of a multimedia signal. Moreover, the multiple watermarks can be extracted without affecting one another during the extraction process. We analyze the effect of the size of the spreading vector on the unit maximum capacity, and consequently derive the theoretical rela- tionship between the size of the spreading vector and the unit maximum capacity. A number of experiments are conducted to determine the optimal parameter values for maximum robustness on the premise of high capacity and good imperceptibility.

Keywords

B5G / Multimedia information security / Spread transform dither modulation / Spreading vector measurement / Unit maximum capacity

Cite this article

Download citation ▾
Mianjie Li, Senfeng Lai, Jiao Wang, Zhihong Tian, Nadra Guizani, Xiaojiang Du, Chun Shan. Analysis on unit maximum capacity of orthogonal multiple watermarking for multimedia signals in B5G wireless communications. , 2024, 10(1): 38-44 DOI:10.1016/j.dcan.2022.05.009

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Sakib, T. Tazrin, M.M. Fouda, Z.M. Fadlullah, N. Nasser, An efficient and lightweight predictive channel assignment scheme for multiband B5G-enabled massive IoT: a deep learning approach, IEEE Internet Things J. 8 (2021) 5285-5297.

[2]

F. Shu, T. Shen, L. Xu, Y. Qin, S. Wan, S. Jin, X. You, J. Wang,Directional modulation: a physical-layer security solution to B5G and future wireless networks, IEEE Network 34 (2020) 210-216.

[3]

Q. Qi, X. Chen, C. Zhong, Z. Zhang, Integrated sensing, computation and communication in B5G cellular Internet of things, IEEE Trans. Wireless Commun. 20 (2021) 332-344.

[4]

D. Wang, B. Song, D. Chen, X. Du, Intelligent cognitive radio in 5G: AI-based hierarchical cognitive cellular networks, IEEE Wireless Commun. 26 (2019) 54-61.

[5]

J. Qiu, L. Du, D. Zhang, S. Su, Z. Tian, Nei-TTE: intelligent traffic time estimation based on fine-grained time derivation of road segments for smart city, IEEE Trans. Ind. Inf. 16 (2020) 2659-2666.

[6]

G. Sun, Y. Li, H. Yu, A.V. Vasilakos, X. Du, M. Guizani, Energy-efficient and traffic- aware service function chaining orchestration in multi-domain networks, Future Generat. Comput. Syst. 91 (2019) 347-360.

[7]

C. Luo, Z. Tan, G. Min, J. Gan, W. Shi, Z. Tian, A novel web attack detection system for Internet of things via ensemble classification, IEEE Trans. Ind. Inf. 17 (2021) 5810-5818.

[8]

M. Shafiq, Z. Tian, A.K. Bashir, X. Du, M. Guizani, CorrAUC: a malicious bot-IoT traffic detection method in IoT network using machine-learning techniques, IEEE Internet Things J. 8 (2021) 3242-3254.

[9]

Y. Yu, L. Xue, Y. Li, X. Du, M. Guizani, B. Yang, Assured data deletion with fine- grained access control for fog-based industrial applications, IEEE Trans. Ind. Inf. 14 (2018) 4538-4547.

[10]

Y. Duan, X. Fu, B. Luo, Z. Wang, J. Shi, X. Du,Detective: automatically identify and analyze malware processes in forensic scenarios via DLLs, in: 2015 IEEE International Conference on Communications (ICC), 2015, pp. 5691-5696.

[11]

G. Sun, Y. Zhang, D. Liao, H. Yu, X. Du, M. Guizani, Bus-trajectory-based street- centric routing for message delivery in urban vehicular ad hoc networks, IEEE Trans. Veh. Technol. 67 (2018) 7550-7563.

[12]

Z. Xu, C. Ao, B. Huang, Channel capacity analysis of the multiple orthogonal sequence spread spectrum watermarking in audio signals, IEEE Signal Process. Lett. 23 (2016) 20-24.

[13]

Y. Xiang, I. Natgunanathan, S. Guo, W. Zhou, S. Nahavandi, Patchwork-based audio watermarking method robust to de-synchronization attacks, IEEE/ACM Trans. Audio Speech Lang. Process. 22 (2014) 1413-1423.

[14]

B. Chen, G.W. Wornell, Provably robust digital watermarking, in: Photonics East, 1999, pp. 43-54.

[15]

S.C. Kushwaha, P. Das, M. Chakraborty, Multiple watermarking on digital audio based on DWT technique, in: 2015 International Conference on Communications and Signal Processing (ICCSP), IEEE, 2015, pp. 303-307.

[16]

T. Liu, G. Yang, Q. Wang, A multiple audio watermarking algorithm based on shear resisting DWT and LSB, in: 2011 the 7th International Conference on Networked Computing, INC), IEEE, 2011, pp. 78-83.

[17]

N. Arnold, Z. Huang, Blind detection of multiple audio watermarks, in: Proceedings First International Conference on WEB Delivering of Music, IEEE, 2001, pp. 4-11.

[18]

N. El Hamdouni, A. Adib, S.D. Larbi, M. Turki, A blind digital audio watermarking scheme based on EMD and UISA techniques, Multimed. Tool. Appl. 64 (2013) 809-829.

[19]

I. Natgunanathan, Y. Xiang, G. Hua, G. Beliakov, J. Yearwood, Patchwork-based multilayer audio watermarking, IEEE/ACM Trans. Audio Speech Lang. Process. 25 (2017) 2176-2187.

[20]

S. Behnia, M. Teshnehlab, P. Ayubi, Multiple-watermarking scheme based on improved chaotic maps, Commun. Nonlinear Sci. Numer. Simulat. 15 (2010) 2469-2478.

[21]

P.H. Wong, O.C. Au, Y.M. Yeung, Novel blind multiple watermarking technique for images, IEEE Trans. Circ. Syst. Video Technol. 13 (2003) 813-830.

[22]

S. Roy, A.K. Pal, A blind DCT based color watermarking algorithm for embedding multiple watermarks, AEU - Int. J. Electron. Commun. 72 (2017) 149-161.

[23]

X.-W. Li, I.-K. Lee, Robust copyright protection using multiple ownership watermarks, Opt Express 23 (2015) 3035-3046.

[24]

W. Cheney, D.R. Kincaid, Linear Algebra: Theory and Applications, 2012.

[25]

Ebu, SQAM - Sound Quality Assessment Material, 2001. http://sound.media.mit.edu/resources/mpeg4/audio/sqam/, 08.06.18.

[26]

I.J. Cox, J. Kilian, T. Leighton, T. Shamoon, Secure spread spectrum watermarking for images, audio and video, in: 3rd IEEE International Conference on Image Processing, IEEE, 1996, pp. 243-246.

[27]

P. Kumsawat, A genetic algorithm optimization technique for multiwavelet-based digital audio watermarking, EURASIP J. Appl. Signal Process. 2010 ( 2010) 471842.

[28]

V. Bhat, I. Sengupta, A. Das, An adaptive audio watermarking based on the singular value decomposition in the wavelet domain, Digit. Signal Process. 20 (2010) 1547-1558.

[29]

A. Al-Haj, An imperceptible and robust audio watermarking algorithm, EURASIP J. Audio Speech Music Process. 37 (2014), https://doi.org/10.1186/s13636-014-0037-2, 2014.

[30]

M. Hemis, B. Boudraa, D. Megías, T. Merazi-Meksen, Adjustable audio watermarking algorithm based on DWPT and psychoacoustic modeling, Multimed. Tool. Appl. 77 (2018) 11693-11725.

[31]

H.-H. Tsai, D.-W. Sun, Color image watermark extraction based on support vector machines, Inf. Sci. 177 (2007) 550-569.

[32]

C. Wang, X. Wang, C. Zhang, Z. Xia, Geometric correction based color image watermarking using fuzzy least squares support vector machine and Bessel K form distribution, Signal Process. 134 (2017) 197-208.

AI Summary AI Mindmap
PDF

52

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/